Product Description
Product Parameters
item |
SH-160 |
Condition |
New |
Warranty |
12 months |
Applicable Industries |
Garment Shops, Building Material Shops, Machinery Repair Shops, Food & Beverage Factory, General |
Weight (KG) |
45 |
Video outgoing-inspection |
Provided |
Machinery Test Report |
Provided |
Marketing Type |
Ordinary Product |
Warranty of core components |
1 Year |
Core Components |
Bearing |
Standard or Nonstandard |
Standard |
Structure |
Piston Cylinder |
Power |
Hydraulic |
Body Material |
Steel |
Place of CHINAMFG |
China |
|
ZheJiang |
Color |
Customized |
Size |
Customized |
Bore size |
Customized |
Our Advantages
1.All specification is designed by professional engineers.
2.All material is processed by skilled workers and advanced CNC lathe.
3.All cylinders are 100% tested before package to ensure every cylinder is qualified for its purpose.
4.Package is air cushion film for each cylinder, and wooden case or steel pallet for all cylinders to ensure goods can arrive at customer safely.
5.One year warranty and long time track service is offered to solve any problems of after sale.
Company Introduction
FAQ
Q1. What are your terms of payment?
A: T/T 30% as deposit, 70% before delivery. We will show you the photos of products and packaging before you pay the balance.
Q2. What are your delivery terms?
A: Ex-factory price, FOB price, CIF price and deliveryprice.
Q3. What are your packing conditions?
A: Usually, we pack the goods in neutral white boxes and brown cartons. If you have a
legally registered patent, we can pack the goods in your brand packaging box after receiving your authorization letter.
Q4. How about your delivery time?
A: Generally speaking, it takes 30 to 60 days after receiving the advance payment. The specific delivery
time depends onAccording to the item and quantity of your order.
Q5. Can you produce according to the sample?
A: Yes, we can produce according to your samples or technical drawings. We can make molds and fixtures.
Q6. What is your policy sample?
A: If we have ready-made parts inventory, we can provide samples, but the customer must pay the sample cost and Express fee.
Q7. Do you test all goods before shipment?
A: Yes, we conduct 100% test before delivery
Q8: How do you maintain a long-term and good relationship with our business?
A: 1. We maintain good quality and competitive price to ensure the interests of customers;
2. We regard every customer as our friend. We sincerely do business with them and make friends with them,No matter where they come from.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
How do hydraulic cylinders compare to other methods of force generation like electric motors?
Hydraulic cylinders and electric motors are two different methods of force generation with distinct characteristics and applications. While both hydraulic cylinders and electric motors can generate force, they differ in terms of their working principles, performance attributes, and suitability for specific applications. Here’s a detailed comparison of hydraulic cylinders and electric motors:
1. Working Principle:
– Hydraulic Cylinders: Hydraulic cylinders generate force through the conversion of fluid pressure into linear motion. They consist of a cylinder barrel, piston, piston rod, and hydraulic fluid. When pressurized hydraulic fluid enters the cylinder, it pushes against the piston, causing the piston rod to extend or retract, thereby generating linear force.
– Electric Motors: Electric motors generate force through the conversion of electrical energy into rotational motion. They consist of a stator, rotor, and electromagnetic field. When an electrical current is applied to the motor’s windings, it creates a magnetic field that interacts with the rotor, causing it to rotate and generate torque.
2. Force and Power:
– Hydraulic Cylinders: Hydraulic cylinders are known for their high force capabilities. They can generate substantial linear forces, making them suitable for heavy-duty applications that require lifting, pushing, or pulling large loads. Hydraulic systems can provide high force output even at low speeds, allowing for precise control over force application. However, hydraulic systems typically operate at lower speeds compared to electric motors.
– Electric Motors: Electric motors excel in providing high rotational speeds and are commonly used for applications that require rapid motion. While electric motors can generate significant torque, they tend to have lower force output compared to hydraulic cylinders. Electric motors are suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.
3. Control and Precision:
– Hydraulic Cylinders: Hydraulic systems offer excellent control over force, speed, and positioning. By regulating the flow of hydraulic fluid, the force and speed of hydraulic cylinders can be precisely controlled. Hydraulic systems can provide gradual acceleration and deceleration, allowing for smooth and precise movements. This level of control makes hydraulic cylinders well-suited for applications that require precise positioning, such as in industrial automation or construction equipment.
– Electric Motors: Electric motors also offer precise control over speed and positioning. Through motor control techniques such as varying voltage, frequency, or pulse width modulation (PWM), the rotational speed and position of electric motors can be accurately controlled. Electric motors are commonly used in applications that require precise speed control, such as robotics, CNC machines, or servo systems.
4. Efficiency and Energy Consumption:
– Hydraulic Cylinders: Hydraulic systems can be highly efficient, especially when properly sized and designed. However, hydraulic systems typically have higher energy losses due to factors such as fluid leakage, friction, and heat generation. The overall efficiency of a hydraulic system depends on the design, component selection, and maintenance practices. Hydraulic systems require a hydraulic power unit to pressurize the hydraulic fluid, which consumes additional energy.
– Electric Motors: Electric motors can have high efficiency, especially when operated at their optimal operating conditions. Electric motors have lower energy losses compared to hydraulic systems, primarily due to the absence of fluid leakage and lower friction losses. The overall efficiency of an electric motor depends on factors such as motor design, load conditions, and control techniques. Electric motors require an electrical power source, and their energy consumption depends on the motor’s power rating and the duration of operation.
5. Environmental Considerations:
– Hydraulic Cylinders: Hydraulic systems typically use hydraulic fluids that can pose environmental concerns if they leak or are not properly disposed of. The choice of hydraulic fluid can impact factors such as biodegradability, toxicity, and potential environmental hazards. Proper maintenance and leak prevention practices are essential to minimize the environmental impact of hydraulic systems.
– Electric Motors: Electric motors are generally considered more environmentally friendly since they do not require hydraulic fluids. However, the environmental impact of electric motors depends on the source of electricity used to power them. When powered by renewable energy sources, such as solar or wind, electric motors can offer a greener solution compared to hydraulic systems.
6. Application Suitability:
– Hydraulic Cylinders: Hydraulic cylinders are commonly used in applications that require high force output, precise control, and durability. They are widely employed in industries such as construction, manufacturing, mining, and aerospace. Hydraulic systems are well-suited for heavy-duty applications, such as lifting heavy objects, operating heavy machinery, or controlling large-scale movements.
– Electric Motors: Electric motors are widely used in various industries and applications that require rotational motion, speed control, and precise positioning. They are commonly found in appliances, transportation, robotics, HVAC systems, and automation. Electric motorsare suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.In summary, hydraulic cylinders and electric motors have different working principles, force capabilities, control characteristics, efficiency levels, and application suitability. Hydraulic cylinders excel in providing high force output, precise control, and durability, making them ideal for heavy-duty applications. Electric motors, on the other hand, offer high rotational speeds, precise speed control, and are commonly used for applications that involve continuous rotary motion. The choice between hydraulic cylinders and electric motors depends on the specific requirements of the application, including the type of motion, force output, control precision, and environmental considerations.
Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance
Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:
- Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
- Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
- Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
- Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
- Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.
In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.
What factors should be considered when selecting the right hydraulic cylinder for an application?
When selecting the right hydraulic cylinder for an application, several important factors need to be considered. These factors help ensure that the chosen hydraulic cylinder is suitable for the specific requirements of the application and will perform reliably. Here are the key factors to consider:
1. Load Requirements:
– One of the crucial factors to consider is the load requirement of the application. Determine the maximum load that the hydraulic cylinder needs to handle. Consider both the static load (when the cylinder is stationary) and the dynamic load (when the cylinder is in motion). The load requirement will impact the cylinder’s bore size, rod diameter, and overall strength. Choose a hydraulic cylinder with a load capacity that exceeds the application’s maximum load to ensure safety and longevity.
2. Stroke Length:
– The stroke length refers to the distance the hydraulic cylinder needs to extend and retract to perform the desired motion. Measure the required stroke length based on the application’s operational requirements. It is essential to choose a hydraulic cylinder with a stroke length that matches or exceeds the required distance. Consider any potential variations or adjustments in the stroke length that may be needed in the future.
3. Operating Pressure:
– Consider the operating pressure required for the application. The hydraulic cylinder must be capable of withstanding the maximum pressure within the hydraulic system. Ensure that the selected cylinder has a pressure rating that exceeds the application’s maximum operating pressure. This ensures safety and prevents premature failure.
4. Speed Requirements:
– Determine the required speed of the hydraulic cylinder’s movement for the application. Consider both the extension and retraction speeds. Select a cylinder that can achieve the desired speed while maintaining precise control and stability. It is important to choose a cylinder that can handle the required speed without compromising performance or safety.
5. Mounting:
– Evaluate the available space and mounting requirements for the hydraulic cylinder. Consider the mounting type (such as flange, foot, trunnion, or clevis), the available mounting points, and any specific mounting constraints. Ensure that the selected cylinder can be easily and securely mounted in the desired location.
6. Environmental Factors:
– Assess the environmental conditions in which the hydraulic cylinder will operate. Consider factors such as temperature extremes, humidity, exposure to chemicals, dust, or corrosive substances. Choose a cylinder that is designed to withstand the specific environmental conditions of the application. This may involve selecting appropriate materials, coatings, or seals to ensure the longevity and performance of the cylinder.
7. Cylinder Configuration:
– Determine the appropriate cylinder configuration based on the application’s requirements. Consider factors such as single-acting or double-acting cylinders, telescopic cylinders for limited space, or custom configurations for unique applications. Evaluate the specific needs of the application to select the most suitable cylinder configuration.
8. Maintenance and Serviceability:
– Consider the maintenance and service requirements of the hydraulic cylinder. Evaluate factors such as ease of access for maintenance, availability of spare parts, and the reputation of the manufacturer or supplier in terms of customer support and after-sales service. Choosing a reliable and reputable brand can ensure ongoing support and availability of spare parts when needed.
9. Compliance and Standards:
– Depending on the industry and application, certain compliance standards may need to be met. Consider any industry-specific regulations, safety standards, or certifications that the hydraulic cylinder should comply with. Ensure that the selected cylinder meets the required standards and certifications for the application.
10. Cost and Budget:
– Finally, consider the cost and budget for the hydraulic cylinder. While it is important to select a cylinder that meets the application’s requirements, it is also necessary to consider the overall cost-effectiveness. Evaluate the initial purchase cost, long-term maintenance costs, and the expected lifespan of the cylinder. Balancing the cost and quality will help in selecting a hydraulic cylinder that provides the best value for the application.
By considering these factors in the selection process, it becomes possible to choose the right hydraulic cylinder that meets the specific requirements of the application in terms of load capacity, stroke length, operating pressure, speed, mounting, environmental conditions, maintenance needs, compliance, and cost-effectiveness. Proper selection ensures optimal performance, reliability, and longevity of the hydraulic cylinder in the intended application.
editor by Dream 2024-11-06
China Standard Wholesale Price OEM Factory Customized Dump Tipper Truck Hoist Piston Type Small Mini Telescopic Custom Scissor Lift Hydraulic Cylinders Manufacturer in China vacuum pump design
Product Description
Solutions Provider of Hydraulic Cylinder
Product Description
As the professional manufacturer of hydraulic cylinder in China, we can offer you custom products to fulfill every requirement for the hydraulic cylinder market.
-Customized Sizes
-Customized Colors
-Customized Designs
-Customized Packages
-More Requirements Available
The objectives of our business are to provide high quality products and services at a cost effective price.
Seal |
Parker, Merkel, NOK, Hallite,etc. |
Helps Links
To get a free sample, please click here |
Paint |
Red, Grey, Yellow, Black, etc. |
|
Material |
ST52, CK45, 4140, Duplex2205, |
|
Certificate |
ABS, Lloyds, SGS, etc. |
|
Core components |
Bearing, Pressure vessel, Pump |
|
Non-standard |
Yes |
|
Structure |
Piston Type, Plunger Type, Telescopic Type |
|
Power |
Hydraulic & Pneumatic |
|
Brand |
Guoyue |
|
Sample |
Available |
Contact the experts at Guoyue today for all your cylinder requirements.
Our Advantages
We have many advantages that will help a lot to your business, including but not limited to:
1. Equipped with State-of-the-art Production Lines
Guoyue has introduced and absorbed advanced hydraulic design and production technologies from European (such as German) and American countries, ensuring that its design and manufacturing capabilities are consistently aligned with international advanced hydraulic cylinder technology.
2. Strict QC Process Before Shipping
The company emphasizes strict quality control, with each production process following standardized operating procedures, and comprehensive management systems in place to ensure that every product is processed to perfection.
3. Success in Many Projects
We have served clients with a diverse range of cylinder requirements, including construction projects, waste management, food industry, mining, infrastructure repairs, metal production, marine, agriculture, oil & gas and more applications.
4. Professional Support in Design, Samples and Bulk Order
As we have our own factories, the more benefits you can get from us:
—–We can get the production done based on the designs, reference pictures, even your drafts.
—–There is no limit of minimum order quantity, and we never refuse the small order, even 1 unit.
—–We can offer you the free samples to check if you buy it in large quantites.
Successful Projects
As the leader in custom hydraulic cylinder design and manufacturing, we have been successful in lot of projects, including
- Aerospace industry: Particularly for such devices as landing gears and CHINAMFG flaps
- Aerial Work Platforms (AWP)
- Agricultural: Small spraying equipment as well as harvesters, loaders and tractors
- Automotive
- Civil Engineering: Bulldozers, excavators, trenchers as well as attachments
- Construction: Concrete pumps and paving applications
- Energy: Flow controls for water gates
- Food, production and manufacturing
- Forestry and logging
- Motorway repairs and maintenance
- Mining
- Materials handling: Single acting hydraulic cylinders for sale are commonly employed in such equipment
- Mechanical engineering: Operation for feeding devices as well as automated production lines, plastic forming machines and transportation devices
- Oil and gas industries
- Recycling plants: Compressing scrap metal and other materials
- Shipbuilding: Steering devices
Company Profile
Guoyue Hydraulic Equipment Manufacturing (ZheJiang ) Co., Ltd., is a high-technology enterprise that integrates research, design, development, production, operation, and service, specializing in the production of hydraulic cylinders, including single acting cylinders, double acting Cylinders, nested cylinders, rotating cylinder, low height cylinders, high tonnage cylinders, tie-rod cylinders and more.
With a registered capital of 50 million Chinese Yuan, the company covers an area of 10, 000 sqft, with more than 100 employees. Also, certified with ISO 9001/ISO 14001/ISO 45001 and many own patents, our products have been approved by clients all over the world, including USA, Europe, Middle East, Middle Asia, Southeast Asia and more countries & areas.
As the leader in custom hydraulic cylinder design and manufacturing, Guoyue serves Original Equipment Manufacturers (OEMs) with custom and innovative hydraulic cylinder solutions. The team at Guoyue liaises closely with each customer to engineer and produce cylinders for machinery, equipment or projects that incorporate cylinders into their hydraulic systems.
We work directly with engineers, business owners, procurement teams, project managers, and technical specialists who often require a custom approach to their cylinder specifications – in terms of fit, function, and overall performance.
Also, Guoyue has introduced and absorbed advanced hydraulic product design and production technologies from Germany and other European and American countries, ensuring that its design and manufacturing capabilities are consistently aligned with international advanced hydraulic cylinder technology.
We have served clients with a diverse range of cylinder requirements. We have extensive experience working within many industries and the unique needs of each – including construction projects, waste management, food Industry, mining, infrastructure repairs, metal production, marine, agriculture, oil & gas and more applications.
Guoyue employees are at the heart of our operations. It is through the dedication of our team at Guoyue that we can consistently deliver the exact services and products required by every client.
Contact the experts at Guoyue today for all your cylinder requirements.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | Low/Medium/High Pressure |
Work Temperature: | Low/Medium/High Temperature |
Acting Way: | Single/Double Acting |
Working Method: | Rotary/Straight Trip |
Adjusted Form: | Switch/Regulated Type |
Customization: |
Available
|
|
---|
Can telescopic cylinders be used in both mobile and stationary machinery?
Yes, telescopic cylinders can be used in both mobile and stationary machinery. Here’s a detailed explanation:
Versatility:
Telescopic cylinders are highly versatile and can be integrated into a wide range of machinery, regardless of whether it is mobile or stationary. The modular design and customizable features of telescopic cylinders make them adaptable to various applications and industries.
Mobile machinery:
In mobile machinery, such as construction equipment, agricultural machinery, material handling vehicles, and truck-mounted cranes, telescopic cylinders play a crucial role. They are commonly used for tasks such as lifting and lowering loads, extending and retracting booms or arms, tilting or dumping containers, and providing stability and support. The compactness of telescopic cylinders is particularly advantageous in mobile machinery, where space constraints are common.
Stationary machinery:
Telescopic cylinders are also well-suited for stationary machinery, including industrial equipment, manufacturing machinery, hydraulic presses, and material processing systems. In these applications, telescopic cylinders are used for tasks such as lifting heavy objects, adjusting heights or positions, applying pressure or force, and controlling movements. The extended reach and high force output of telescopic cylinders make them suitable for stationary machinery that requires precise and controlled motion.
Common applications:
Telescopic cylinders can be found in a variety of common applications across both mobile and stationary machinery. Some examples include:
- Crane trucks: Telescopic cylinders enable the extension and retraction of crane booms, allowing for lifting and positioning of heavy loads at various heights and distances.
- Front-end loaders: Telescopic cylinders support the lifting and tilting of buckets or forks, facilitating material handling and loading operations.
- Dump trucks: Telescopic cylinders enable the tilting of dump truck beds, allowing for controlled unloading of materials.
- Scissor lifts: Telescopic cylinders provide vertical lifting and lowering capabilities, allowing for elevated work platforms and access to higher areas.
- Hydraulic presses: Telescopic cylinders apply force to compress or shape materials in manufacturing processes.
These examples illustrate the versatility and applicability of telescopic cylinders in both mobile and stationary machinery.
It’s important to consider the specific requirements of each machinery application and consult with manufacturers or industry experts to ensure the selection and integration of telescopic cylinders that meet the operational needs and safety standards.
Can telescopic cylinders be used in aerial work platforms for extended reach?
Yes, telescopic cylinders are commonly used in aerial work platforms to achieve extended reach. Here’s a detailed explanation:
Increased working height:
Telescopic cylinders enable aerial work platforms to reach greater heights compared to other types of lifting mechanisms. The multi-stage design of telescopic cylinders allows for sequential extension, providing incremental increases in working height. This extended reach capability is crucial for accessing elevated areas such as construction sites, maintenance tasks, or elevated platforms.
Flexible reach adjustment:
Telescopic cylinders offer flexibility in adjusting the reach of aerial work platforms. By extending or retracting the cylinders, operators can modify the platform’s horizontal reach according to the specific job requirements. This flexibility allows for precise positioning of the platform, ensuring safe and efficient access to work areas at varying distances from the base.
Stability and load capacity:
Telescopic cylinders contribute to the stability and load capacity of aerial work platforms during extended reach operations. The cylinders provide structural support and help distribute the weight of the platform and the load being lifted. This load distribution ensures stability, minimizes the risk of tipping or tilting, and allows for safe operation even at maximum reach.
Controlled movements:
Telescopic cylinders enable controlled and smooth movements of aerial work platforms. The hydraulic control system regulates the extension and retraction of the cylinders, allowing for precise control over the platform’s vertical and horizontal motions. This controlled movement enhances operator safety, minimizes vibrations, and enables accurate positioning of the platform during extended reach tasks.
Compact design:
Telescopic cylinders offer a compact design that allows for efficient integration into aerial work platforms. The cylinders can be retracted when not in use, minimizing the space occupied by the lifting mechanism. This compactness allows for better maneuverability, improved accessibility in confined spaces, and efficient transportation of the aerial work platform.
Integration with other platform features:
Telescopic cylinders can be integrated with other features of aerial work platforms to enhance functionality. For example, they can be combined with articulating booms or rotating platforms to achieve versatile reach and positioning capabilities. This integration expands the range of applications for aerial work platforms, enabling them to navigate obstacles, reach over obstacles, or access difficult-to-reach areas.
Advantages of telescopic cylinders in aerial work platforms:
Telescopic cylinders offer several advantages when used in aerial work platforms for extended reach:
- Increased working height for accessing elevated areas
- Flexible reach adjustment for precise positioning
- Stability and load capacity during extended reach
- Controlled movements for operator safety
- Compact design for maneuverability and transportation
- Integration with other platform features for enhanced functionality
Overall, telescopic cylinders are a reliable and efficient choice for achieving extended reach in aerial work platforms. Their ability to increase working height, provide flexibility in reach adjustment, ensure stability, enable controlled movements, offer a compact design, and integrate with other platform features makes them well-suited for a wide range of aerial work applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in aerial work platforms.
Can you explain the purpose and role of telescopic cylinders in machinery?
Telescopic cylinders play a crucial role in various machinery and equipment applications. Here’s a detailed explanation:
Purpose of telescopic cylinders:
Telescopic cylinders are primarily used when an extended stroke length is required while maintaining a compact retracted length. They enable machinery and equipment to achieve extended reach, height adjustment, or lifting capabilities without increasing the overall size or footprint of the cylinder. The purpose of telescopic cylinders is to provide efficient and reliable linear motion in applications that demand long stroke lengths.
Role of telescopic cylinders in machinery:
- Material Handling: Telescopic cylinders are extensively used in material handling machinery, such as cranes, forklifts, and loaders. They enable the extension and retraction of booms, arms, or lifting mechanisms, allowing operators to reach higher or farther to handle and transport materials with ease.
- Dump Trucks and Trailers: Telescopic cylinders are commonly employed in dump trucks and trailers for the tilting and unloading of cargo or bulk materials. The extendable stroke of the cylinder raises the bed or container to dump the contents, enabling efficient unloading and reducing manual labor.
- Aerial Platforms: Telescopic cylinders are essential components in aerial work platforms, such as cherry pickers or scissor lifts. They facilitate the vertical movement and height adjustment of the platform, allowing operators to access elevated work areas safely.
- Construction Equipment: Telescopic cylinders are used in various construction equipment, including excavators, backhoes, and telescopic handlers. They provide the necessary extension and retraction for the boom, arm, or bucket, enabling digging, lifting, and reaching capabilities in construction and earthmoving applications.
- Mobile Equipment: Telescopic cylinders are utilized in mobile equipment, such as telescopic cranes and mobile cranes. They enable the extension and retraction of the boom sections, allowing for increased reach and lifting capacities in lifting and construction operations.
- Specialized Machinery: Telescopic cylinders find application in specialized machinery, such as fire truck aerial ladders, telescopic masts, or telescopic booms in industrial and military equipment. They provide the required extension and retraction for specific tasks, such as firefighting, surveillance, or equipment deployment.
The role of telescopic cylinders in machinery is to provide precise and controlled linear motion, enabling the equipment to perform specific tasks with extended reach, height adjustment, or lifting capabilities. They contribute to the efficiency, versatility, and productivity of machinery in various industries.
It’s important to ensure proper selection, installation, and maintenance of telescopic cylinders based on the specific machinery requirements and manufacturer’s guidelines to ensure safe and reliable operation.
editor by Dream 2024-04-29
China Standard OEM Hydraulic Cylinder for 7 Ton Shovel Loaders High Quality Hot Sale Compact Mini Wheel Loader vacuum pump ac system
Product Description
Product Description
HangZhou CHINAMFG manufacturing capabilities are a vital component of our business and at the heart of what we do. Our in-house engineering team, manufacturing and quality systems were designed to ensure that we build only the best for our customers; guaranteeing the most appropriate design features and quality product materials for your application. We can also incorporate load holding valves, linear position transducers and a wide range of mounting options. Custom paint and packaging options are also available. 3D CAD models are available CHINAMFG request.
Wide variety of custom cylinders are manufactured, including CHINAMFG cylinders (both single and double acting), single and double acting telescopic (small and large bore), double end cylinders, piggyback design, mill type cylinders, tie rod cylinders, accumulators, marine grade steering cylinders, and standard dimension welded product lines.
Product Parameters
Max | Min | |
HydroCylinder bore: | 280 mm | 10 mm |
Piston Rod Diameter: | 280 mm | 10 mm |
Retract Length: | 3500 mm | 50 mm |
Stretch Length(Single stage cylinder): | 6500 mm | 60 mm |
Stretch Length(Dual stage cylinder): | 12500 mm | 60 mm |
Working Pressure: | 4500PSI | 1000PSI |
Detailed Photos
Mounting
Factory and Equipments
Packaging & Shipping
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can hydraulic cylinders be integrated with modern telematics and remote monitoring?
Yes, hydraulic cylinders can indeed be integrated with modern telematics and remote monitoring systems. The integration of hydraulic cylinders with telematics and remote monitoring technology offers numerous benefits, including enhanced operational efficiency, improved maintenance practices, and increased overall productivity. Here’s a detailed explanation of how hydraulic cylinders can be integrated with modern telematics and remote monitoring:
1. Sensor Integration:
– Hydraulic cylinders can be equipped with various sensors to gather real-time data about their performance and operating conditions. Sensors such as pressure transducers, temperature sensors, position sensors, and load sensors can be integrated directly into the cylinder or its associated components. These sensors provide valuable information about parameters such as pressure, temperature, position, and load, enabling remote monitoring and analysis of the cylinder’s behavior.
2. Data Transmission:
– The data collected from the sensors in hydraulic cylinders can be transmitted wirelessly or through wired connections to a central monitoring system. Wireless communication technologies such as Bluetooth, Wi-Fi, or cellular networks can be employed to transmit data in real-time. Alternatively, wired connections such as Ethernet or CAN bus can be utilized for data transmission. The choice of communication method depends on the specific requirements of the application and the available infrastructure.
3. Remote Monitoring Systems:
– Remote monitoring systems receive and process the data transmitted from hydraulic cylinders. These systems can be cloud-based or hosted on local servers, depending on the implementation. Remote monitoring systems collect and analyze the data to provide insights into the cylinder’s performance, health, and usage patterns. Operators and maintenance personnel can access the monitoring system through web-based interfaces or dedicated software applications to view real-time data, receive alerts, and generate reports.
4. Condition Monitoring and Predictive Maintenance:
– Integration with telematics and remote monitoring enables condition monitoring and predictive maintenance of hydraulic cylinders. By analyzing the collected data, patterns and trends can be identified, allowing for the detection of potential issues or anomalies before they escalate into major problems. Predictive maintenance algorithms can be applied to the data to generate maintenance schedules, recommend component replacements, and optimize maintenance activities. This proactive approach helps prevent unexpected downtime, reduces maintenance costs, and maximizes the lifespan of hydraulic cylinders.
5. Performance Optimization:
– The data collected from hydraulic cylinders can also be utilized to optimize their performance. By analyzing parameters such as pressure, temperature, and load, operators can identify opportunities for improving operational efficiency. Insights gained from the remote monitoring system can guide adjustments in system settings, load management, or operational practices to optimize the performance of hydraulic cylinders and the overall hydraulic system. This optimization can result in energy savings, improved productivity, and reduced wear and tear.
6. Integration with Equipment Management Systems:
– Telematics and remote monitoring systems can be integrated with broader equipment management systems. This integration allows hydraulic cylinder data to be correlated with data from other components or related machinery, providing a comprehensive view of the overall system’s performance. This holistic approach enables operators to identify potential interdependencies, optimize system-wide performance, and make informed decisions regarding maintenance, repairs, or upgrades.
7. Enhanced Safety and Fault Diagnosis:
– Telematics and remote monitoring can contribute to enhanced safety and fault diagnosis in hydraulic systems. Real-time data from hydraulic cylinders can be used to detect abnormal conditions, such as excessive pressure or temperature, which may indicate potential safety risks. Fault diagnosis algorithms can analyze the data to identify specific issues or malfunctions, enabling prompt intervention and reducing the risk of catastrophic failures or accidents.
In summary, hydraulic cylinders can be effectively integrated with modern telematics and remote monitoring systems. This integration enables the collection of real-time data, remote monitoring of performance, condition monitoring, predictive maintenance, performance optimization, integration with equipment management systems, and enhanced safety. By harnessing the power of telematics and remote monitoring, hydraulic cylinder users can achieve improved efficiency, reduced downtime, optimized maintenance practices, and enhanced overall productivity in various applications and industries.
Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders
Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:
- Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
- Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
- Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
- Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
- Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.
In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.
Which industries and machinery commonly use hydraulic cylinders for power transmission?
Hydraulic cylinders are widely used in various industries and machinery for power transmission due to their ability to generate high force, precise control, and reliable operation. They play a crucial role in converting hydraulic energy into mechanical force and motion. Here are the detailed industries and machinery that commonly utilize hydraulic cylinders for power transmission:
1. Construction and Heavy Equipment:
– Hydraulic cylinders are extensively used in the construction industry for tasks involving heavy lifting, pushing, and positioning. They are employed in cranes, excavators, loaders, bulldozers, and other heavy equipment to lift and move heavy loads, operate attachments, and manipulate construction materials. Hydraulic cylinders provide the necessary force and control for tasks such as lifting and lowering buckets, extending and retracting booms, and tilting blades.
2. Material Handling and Logistics:
– In material handling and logistics applications, hydraulic cylinders are vital components for the movement and manipulation of goods. They are used in forklifts, stackers, palletizers, and conveyor systems to lift, lower, and position loads with precision. Hydraulic cylinders enable the efficient transfer of heavy objects, facilitate stacking and sorting operations, and contribute to the smooth operation of material handling equipment.
3. Agriculture and Farming:
– The agricultural industry relies on hydraulic cylinders for various tasks in farming equipment. Tractors, harvesters, sprayers, and loaders utilize hydraulic cylinders to perform functions such as lifting and lowering implements, adjusting the position of attachments, and steering operations. Hydraulic cylinders enable efficient and precise control in tasks like plowing, tilling, harvesting, and baling, enhancing productivity and convenience in agricultural operations.
4. Mining and Extraction:
– Hydraulic cylinders are extensively utilized in the mining and extraction industry for their ability to handle heavy loads and operate in challenging environments. They are employed in mining equipment such as dump trucks, loaders, and excavators for tasks like ore extraction, rock breaking, and material transport. Hydraulic cylinders provide the force required for excavating, loading, and dumping operations, contributing to the efficiency and productivity of mining operations.
5. Manufacturing and Industrial Machinery:
– Hydraulic cylinders are an integral part of various manufacturing and industrial machinery. They are utilized in presses, stamping machines, injection molding machines, and metal forming equipment to apply force for shaping, bending, and pressing operations. Hydraulic cylinders enable precise control over the force and speed required for manufacturing processes, ensuring accurate and consistent results.
6. Automotive and Transportation:
– Hydraulic cylinders are employed in the automotive and transportation industry for a range of applications. They are used in vehicle lifting systems, such as car lifts and hydraulic jacks, for maintenance and repairs. Hydraulic cylinders are also utilized in bus doors, truck tailgates, and cargo handling systems to provide controlled movement and positioning. Additionally, hydraulic suspension systems in trucks, buses, and trailers use hydraulic cylinders for load leveling and stability.
7. Aerospace and Aviation:
– The aerospace and aviation industry relies on hydraulic cylinders for various applications, including aircraft landing gear, wing flaps, and flight control systems. Hydraulic cylinders provide the necessary force and precise control for extending and retracting landing gear, adjusting wing surfaces, and actuating control surfaces. They contribute to the safe and efficient operation of aircraft, ensuring reliable performance during takeoff, landing, and flight maneuvers.
8. Marine and Offshore:
– Hydraulic cylinders are utilized in marine and offshore equipment for a wide range of tasks. They are found in ship and boat steering systems, hatch covers, cranes, winches, and anchor handling equipment. Hydraulic cylinders enable precise control and powerful force transmission in maritime applications, supporting navigation, cargo handling, and offshore operations.
In summary, hydraulic cylinders are commonly used in industries such as construction, material handling, agriculture, mining, manufacturing, automotive, aerospace, marine, and more. They are integral components in machinery and equipment that require reliable power transmission, precise control, and the ability to handle heavy loads. The versatile nature of hydraulic cylinders allows them to be adapted to various applications, contributing to increased efficiency, productivity, and safety in numerous industries.
editor by CX 2024-03-30
China high quality Manufacturer′s Mini Double Acting Telescopic Excavator Boom Bucket Hydraulic Cylinder vacuum pump diy
Product Description
FAQ:
Q:Are you a factory or a trading company?
A:factory
Q: How to order?
A: Inquiry from us → Customization with drawings and samples → Notification of usage scenarios → Received product design recommendations from us → Negotiated details → Confirmed samples → Signed contracts/deposits → Mass production → Goods ready → Balancing/delivery → Further cooperation.
Q: Which transportation method is available?
A: It is a sea express, China express, and other transportation methods are also available. Please contact us if you need another shipping route.
Q: IS OEM/ODM ok?
A: Yes.But the authority of related brand needs to be provided.
Q: How long does it take for delivery [production] and shipment?
A: The delivery time depends on the quantity you order.
Q: how can we guarantee quality?
A: Always a pre-production sample before mass production;Always final lnspection before shipment;
Q: what can you buy from us?
A:hydraulic cylinder,cylinder rod,air cylinder
Q: How to confirm payment?
A:We accept wire transfer, PayPal payment methods, and other payment methods are also acceptable. Please contact us before you make payment through other payment methods.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | -40~+150ºC |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Customization: |
Available
|
|
---|
How do telescopic cylinders contribute to efficient and controlled extension and retraction?
Telescopic cylinders play a crucial role in enabling efficient and controlled extension and retraction. Here’s a detailed explanation:
Nested design:
The nested design of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for efficient extension and retraction. Each stage extends or retracts in a synchronized manner, contributing to smooth and controlled movement. The nested structure also enables compact storage when the cylinder is retracted, optimizing space utilization.
Hydraulic control system:
The hydraulic control system is a key component that enables efficient and controlled extension and retraction of telescopic cylinders. It utilizes hydraulic fluid and pressure to drive the cylinder’s movement. By regulating the flow of hydraulic fluid to each stage, the extension and retraction speed can be precisely controlled. This hydraulic control system ensures synchronized movement of the stages and allows for gradual and controlled extension and retraction.
Valve and cylinder design:
Telescopic cylinders incorporate specific valve and cylinder designs to facilitate efficient and controlled extension and retraction. Flow control valves, such as flow restrictors or throttle valves, are often used to regulate the flow rate of hydraulic fluid to each stage. These valves help manage the speed of extension and retraction, preventing sudden or uncontrolled movements. The cylinder design, including the bore size and rod diameter, is carefully engineered to optimize the balance between extension/retraction speed and force output.
Pressure relief and damping:
To further enhance controlled extension and retraction, telescopic cylinders may incorporate pressure relief and damping mechanisms. Pressure relief valves help prevent over-pressurization of the hydraulic system, ensuring that the cylinder operates within safe limits. Damping devices, such as hydraulic cushions or shock absorbers, can be integrated to dampen the impact or vibrations during extension and retraction, promoting smoother and more controlled movement.
Load-specific adjustments:
Telescopic cylinders can be adjusted to accommodate different load requirements, contributing to efficient and controlled extension and retraction. By adding or removing stages or adjusting the hydraulic pressure, operators can adapt the cylinder’s performance to match the specific load conditions. This customization ensures optimal extension and retraction characteristics for different applications and load capacities.
Overall, the nested design, hydraulic control system, valve and cylinder design, pressure relief mechanisms, and load-specific adjustments all work together to enable telescopic cylinders to contribute to efficient and controlled extension and retraction. These features ensure smooth operation, precise positioning, and safe handling of heavy loads in various industrial applications.
Consulting the manufacturer’s documentation and guidelines is important for understanding the specific capabilities and limitations of telescopic cylinders in terms of extension and retraction.
Can telescopic cylinders be used in forestry equipment for tree handling?
Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:
Tree felling and extraction:
Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.
Boom and arm extension:
In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.
Precise control:
Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.
Load handling and stacking:
Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.
Stability and balance:
Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.
Advantages of telescopic cylinders in forestry equipment:
Telescopic cylinders offer several advantages in tree handling applications:
- Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
- Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
- Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
- Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
- Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.
Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.
Can you explain the purpose and role of telescopic cylinders in machinery?
Telescopic cylinders play a crucial role in various machinery and equipment applications. Here’s a detailed explanation:
Purpose of telescopic cylinders:
Telescopic cylinders are primarily used when an extended stroke length is required while maintaining a compact retracted length. They enable machinery and equipment to achieve extended reach, height adjustment, or lifting capabilities without increasing the overall size or footprint of the cylinder. The purpose of telescopic cylinders is to provide efficient and reliable linear motion in applications that demand long stroke lengths.
Role of telescopic cylinders in machinery:
- Material Handling: Telescopic cylinders are extensively used in material handling machinery, such as cranes, forklifts, and loaders. They enable the extension and retraction of booms, arms, or lifting mechanisms, allowing operators to reach higher or farther to handle and transport materials with ease.
- Dump Trucks and Trailers: Telescopic cylinders are commonly employed in dump trucks and trailers for the tilting and unloading of cargo or bulk materials. The extendable stroke of the cylinder raises the bed or container to dump the contents, enabling efficient unloading and reducing manual labor.
- Aerial Platforms: Telescopic cylinders are essential components in aerial work platforms, such as cherry pickers or scissor lifts. They facilitate the vertical movement and height adjustment of the platform, allowing operators to access elevated work areas safely.
- Construction Equipment: Telescopic cylinders are used in various construction equipment, including excavators, backhoes, and telescopic handlers. They provide the necessary extension and retraction for the boom, arm, or bucket, enabling digging, lifting, and reaching capabilities in construction and earthmoving applications.
- Mobile Equipment: Telescopic cylinders are utilized in mobile equipment, such as telescopic cranes and mobile cranes. They enable the extension and retraction of the boom sections, allowing for increased reach and lifting capacities in lifting and construction operations.
- Specialized Machinery: Telescopic cylinders find application in specialized machinery, such as fire truck aerial ladders, telescopic masts, or telescopic booms in industrial and military equipment. They provide the required extension and retraction for specific tasks, such as firefighting, surveillance, or equipment deployment.
The role of telescopic cylinders in machinery is to provide precise and controlled linear motion, enabling the equipment to perform specific tasks with extended reach, height adjustment, or lifting capabilities. They contribute to the efficiency, versatility, and productivity of machinery in various industries.
It’s important to ensure proper selection, installation, and maintenance of telescopic cylinders based on the specific machinery requirements and manufacturer’s guidelines to ensure safe and reliable operation.
editor by CX 2024-03-08
China best Mal Pneumatic Piston Cylinder Mini Air Cylinder Pneumatic Telescopic Cylinder vacuum pump electric
Product Description
mal pneumatic piston cylinder mini air cylinder pneumatic telescopic cylinder
Product Features
1.Manufactured by our enterprise.
2.Front and back cover and cylinder tube are connected by threads.
3.Piston adopts heterogeneous two-way seal structure. It has compact size and has the function of grease reservation.
4.Front cover adopts self-lubrication bearing guide that has good performance of lubrication and guide.
5.There are several modes of back cover, which makes the installation of cylinder more convenient
6.There are cylinders and mounting accessories with several specifications for your choice.
Product specifications
Bore Size(mm) | 16 | 20 | 25 | 32 | 40 | 50 | 63 | |
Acting Type | Double Acting Type | |||||||
Single Acting Type | ||||||||
Fluid | Air(to be filtered by 40um filter element) | |||||||
Operating Pressure | 0.15-1.0Mpa(0.20-145Psi) | |||||||
TemperatureºC | -20 – +70 | |||||||
Proof Pressure | 1.5Mpa(215Psi) | |||||||
Speed Range (mm/s) | Double Acting Type:30-500 Single Acting Type:50-500 |
|||||||
Cushion type | Bumper | |||||||
Port Size | M5*0.8 | 1/8″ | 1/4″ | |||||
Product Description
Product Show
Related Products
Production Workshop
Quality Assurance
Main Equipment:
automatic coil winding machine, precision automatic die-casting machine, precision extrusion machine, forging machine, CNC machine, milling machine, turning and milling machine, four-axle CNC milling machine, injection machine, vulcanizing machine, surface treatment, electro coating line, automatic painting line, sealing parts pressing machine, as well as 200 testing devices like projectors, direct-reading spectrometer, 3D measuring apparatus, salt spray testing machine, and 10 automatic processing lines.
Perfect Inspection Process:
Raw material inspection (5steps)- Raw materials testing is to ensure the raw material conforming to the order requirements.
Process testing(10steps)-Each processing step testing is to guarantee each step product qualified.
Factory testing(6steps)-Assure 100% product qualified rate to meet customer’s requirements
Contact Us
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Aluminum |
---|---|
Usage: | Semiconductor |
Structure: | Piston Cylinder |
Power: | Pneumatic |
Standard: | Standard |
Pressure Direction: | Double-acting Cylinder |
Customization: |
Available
|
|
---|
Can telescopic cylinders be used in material handling equipment for reach and lift?
Yes, telescopic cylinders are commonly used in material handling equipment to provide reach and lift capabilities. Here’s a detailed explanation:
Role in material handling:
Telescopic cylinders play a crucial role in material handling equipment by extending the reach and enabling the lifting of heavy loads. These cylinders are typically employed in equipment such as forklifts, telehandlers, reach stackers, and aerial work platforms.
Reach extension:
Telescopic cylinders allow material handling equipment to extend their reach by extending the boom or lifting arm. The nested design of the cylinder, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access materials at greater heights or reach into confined spaces.
Lifting capacity:
Telescopic cylinders provide the necessary lifting force to handle heavy loads in material handling equipment. The cylinder’s bore size, rod diameter, and overall construction are engineered to withstand the forces exerted during lifting and ensure safe and efficient load handling.
Precision control:
Telescopic cylinders offer precise control over the extension and retraction of the lifting arm or boom. The hydraulic control system regulates the flow of hydraulic fluid to each stage of the cylinder, allowing for smooth and controlled movement. This precise control is essential in material handling applications to ensure accurate positioning of loads and safe operation.
Compactness and flexibility:
Telescopic cylinders contribute to the compactness and flexibility of material handling equipment. By retracting the cylinder stages, the overall length of the equipment can be minimized, making it easier to maneuver in tight spaces. Additionally, the ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Variety of material handling equipment:
Telescopic cylinders are utilized in a wide range of material handling equipment to enhance reach and lift capabilities. Forklifts, for example, often incorporate telescopic cylinders to extend the forks and reach into pallet racks. Telehandlers and reach stackers utilize telescopic cylinders to extend the lifting arm and reach high stacking heights. Aerial work platforms utilize telescopic cylinders to extend the platform and provide elevated access for maintenance or construction tasks.
Advantages of telescopic cylinders in material handling:
Telescopic cylinders offer several advantages in material handling equipment:
- Increased reach: Telescopic cylinders allow operators to extend the equipment’s reach, enabling access to materials at greater heights or in confined spaces.
- Enhanced lifting capacity: Telescopic cylinders provide the necessary lifting force to handle heavy loads, expanding the equipment’s lifting capabilities.
- Precision and control: The hydraulic control system of telescopic cylinders allows for precise and controlled movement, ensuring accurate load positioning and safe operation.
- Compactness and flexibility: By retracting the cylinder stages, material handling equipment can be more compact and maneuverable, adapting to different working environments.
Overall, telescopic cylinders are widely used in material handling equipment to extend reach and enhance lifting capabilities. Their precise control, compactness, and flexibility make them essential components in various material handling applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, maintenance requirements, and safety considerations.
Can telescopic cylinders be used in forestry equipment for tree handling?
Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:
Tree felling and extraction:
Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.
Boom and arm extension:
In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.
Precise control:
Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.
Load handling and stacking:
Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.
Stability and balance:
Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.
Advantages of telescopic cylinders in forestry equipment:
Telescopic cylinders offer several advantages in tree handling applications:
- Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
- Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
- Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
- Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
- Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.
Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.
Can you explain the purpose and role of telescopic cylinders in machinery?
Telescopic cylinders play a crucial role in various machinery and equipment applications. Here’s a detailed explanation:
Purpose of telescopic cylinders:
Telescopic cylinders are primarily used when an extended stroke length is required while maintaining a compact retracted length. They enable machinery and equipment to achieve extended reach, height adjustment, or lifting capabilities without increasing the overall size or footprint of the cylinder. The purpose of telescopic cylinders is to provide efficient and reliable linear motion in applications that demand long stroke lengths.
Role of telescopic cylinders in machinery:
- Material Handling: Telescopic cylinders are extensively used in material handling machinery, such as cranes, forklifts, and loaders. They enable the extension and retraction of booms, arms, or lifting mechanisms, allowing operators to reach higher or farther to handle and transport materials with ease.
- Dump Trucks and Trailers: Telescopic cylinders are commonly employed in dump trucks and trailers for the tilting and unloading of cargo or bulk materials. The extendable stroke of the cylinder raises the bed or container to dump the contents, enabling efficient unloading and reducing manual labor.
- Aerial Platforms: Telescopic cylinders are essential components in aerial work platforms, such as cherry pickers or scissor lifts. They facilitate the vertical movement and height adjustment of the platform, allowing operators to access elevated work areas safely.
- Construction Equipment: Telescopic cylinders are used in various construction equipment, including excavators, backhoes, and telescopic handlers. They provide the necessary extension and retraction for the boom, arm, or bucket, enabling digging, lifting, and reaching capabilities in construction and earthmoving applications.
- Mobile Equipment: Telescopic cylinders are utilized in mobile equipment, such as telescopic cranes and mobile cranes. They enable the extension and retraction of the boom sections, allowing for increased reach and lifting capacities in lifting and construction operations.
- Specialized Machinery: Telescopic cylinders find application in specialized machinery, such as fire truck aerial ladders, telescopic masts, or telescopic booms in industrial and military equipment. They provide the required extension and retraction for specific tasks, such as firefighting, surveillance, or equipment deployment.
The role of telescopic cylinders in machinery is to provide precise and controlled linear motion, enabling the equipment to perform specific tasks with extended reach, height adjustment, or lifting capabilities. They contribute to the efficiency, versatility, and productivity of machinery in various industries.
It’s important to ensure proper selection, installation, and maintenance of telescopic cylinders based on the specific machinery requirements and manufacturer’s guidelines to ensure safe and reliable operation.
editor by CX 2024-03-01
China Good quality Pneumatic Actuators Mi Series Mini Double Aciting Telescopic Pneumatic Cylinder vacuum pump booster
Product Description
Pls Kindly Note:
-1.The Picture Is MI series Mini Double Aciting Air Pneumatic Cylinder.If you need help,pls contact us.
-2.The goods need 10 work days to produce if product out stock.If you are urgent need product,pls contact us.
-3.If you have any questions with product after you received goods,pls let us know.
After-service will service you until you are satisfied.
HangZhou HI-TECH SMART MACHINERY CO LTD was established in 2013, is a high tech company specialized in pneumatic components and microduct accessories manufacturing. After years’ hard working, it has owned 2 factories now, and the products include pneumatic vibrators, air cylinders, solenoid valves, pneumatic fittings, microduct connectors and other accessory. We have sold our goods to more than 60 countries, and that numbers are still increasing.
Tips:
1. We have more than 10 years experience on pneumatic products;
2. Excellent quality control has always been the goal of our practice;
3. You can purchase most of the pneumatic products here;
4. Sample orders and orders with a small number of products are acceptable;
5. OEM, ODM is ok for us. Not only the label and packaging, but also the personalized customization of the product itself;
6. Any requirements, just feel free to let us know.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Aluminum |
---|---|
Usage: | Print, Semiconductor, Automation and Control, Robot |
Structure: | Series Cylinder |
Power: | Pneumatic |
Standard: | Standard, Nonstandard |
Pressure Direction: | Double-acting Cylinder |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can telescopic cylinders be repaired or maintained when necessary?
Yes, telescopic cylinders can be repaired and maintained when necessary. Here’s a detailed explanation:
Repairability:
Telescopic cylinders are designed with repairability in mind. The modular construction of telescopic cylinders allows for individual components or stages to be replaced or repaired as needed. If a specific part of the cylinder becomes damaged or worn out, it can be disassembled and repaired or replaced, minimizing downtime and cost compared to replacing the entire cylinder.
Maintenance:
Maintenance is essential to ensure the optimal performance and longevity of telescopic cylinders. Regular maintenance practices may include:
- Inspection: Periodic visual inspections to check for any signs of damage, wear, or leakage.
- Lubrication: Applying lubricants to the moving parts of the cylinder to reduce friction and extend component life.
- Cleaning: Removing dirt, debris, and contaminants that may affect the cylinder’s operation.
- Seal replacement: Replacing worn or damaged seals to maintain proper sealing and prevent fluid leakage.
- Pressure testing: Conducting pressure tests to ensure the cylinder’s integrity and identify any potential issues.
- Alignment and adjustment: Verifying proper alignment and making necessary adjustments to ensure smooth operation and prevent excessive wear.
Depending on the specific application and operating conditions, maintenance intervals and procedures may vary. It’s important to follow the manufacturer’s maintenance recommendations and guidelines for the telescopic cylinder to ensure effective maintenance practices.
Professional expertise:
Repairing and maintaining telescopic cylinders often require professional expertise. It is recommended to engage qualified technicians or service personnel with experience in hydraulic systems and telescopic cylinder repairs. They have the knowledge and tools necessary to accurately diagnose issues, perform repairs, and conduct maintenance tasks in a safe and efficient manner.
Manufacturer support:
Manufacturers of telescopic cylinders typically provide support for repair and maintenance. They may offer technical documentation, repair manuals, and access to replacement parts to facilitate the repair process. Consulting the manufacturer’s resources and seeking their assistance can ensure that repairs and maintenance are carried out correctly and in accordance with the cylinder’s specifications.
By implementing proper repair and maintenance practices, telescopic cylinders can be kept in good working condition, extending their service life and maintaining reliable performance.
It’s important to note that repair and maintenance should be performed by qualified individuals and comply with relevant safety guidelines and industry standards.
How do telescopic cylinders handle variations in cylinder size and capacity?
Telescopic cylinders are designed to handle variations in cylinder size and capacity effectively. Here’s a detailed explanation:
Modular design:
Telescopic cylinders feature a modular design that allows for flexibility in cylinder size and capacity. They consist of multiple stages or sections that retract inside one another, similar to a telescope. The number of stages can vary depending on the desired extended length and capacity of the cylinder. This modular design enables telescopic cylinders to be customized according to specific requirements.
Variable stroke length:
Telescopic cylinders offer the advantage of variable stroke length. The stroke length refers to the distance the cylinder can extend and retract. By adjusting the stroke length, the effective size and capacity of the telescopic cylinder can be modified. This flexibility allows for accommodating variations in the size and capacity requirements of different applications.
Increased capacity with additional stages:
Telescopic cylinders can handle variations in capacity by adding more stages to the cylinder. Each stage contributes to the overall capacity of the cylinder. By including additional stages, the cylinder’s capacity can be increased to handle higher loads or operate in more demanding conditions. This scalability makes telescopic cylinders suitable for a wide range of applications with varying capacity needs.
Proportional force distribution:
Telescopic cylinders distribute the applied force proportionally across the stages. As the cylinder extends, each stage contributes to supporting the load and transmitting the force. The force distribution ensures that the load is evenly distributed among the stages, allowing the cylinder to handle variations in capacity effectively.
Hydraulic control system:
Telescopic cylinders rely on a hydraulic control system for operation. The system allows for precise control over the extension and retraction of each stage. By adjusting the hydraulic pressure and flow, operators can regulate the movement and force exerted by the cylinder, ensuring optimal performance and capacity utilization.
Overall, telescopic cylinders handle variations in cylinder size and capacity through their modular design, variable stroke length, ability to add stages for increased capacity, proportional force distribution, and hydraulic control system. These features make telescopic cylinders adaptable to different applications and enable them to effectively handle varying size and capacity requirements.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the size, capacity, and operational considerations of telescopic cylinders.
How does a telescopic cylinder differ from standard hydraulic cylinders?
A telescopic cylinder differs from standard hydraulic cylinders in several ways. Here’s a detailed explanation:
A telescopic cylinder, also known as a multistage cylinder or a sleeve cylinder, is specifically designed to provide an extended stroke length while maintaining a compact retracted length. In contrast, a standard hydraulic cylinder typically consists of a single-stage rod and barrel design. Here are the key differences between a telescopic cylinder and a standard hydraulic cylinder:
- Design and Structure: The most significant difference lies in the design and structure. A standard hydraulic cylinder has a single-stage design, meaning it consists of a single rod and barrel. On the other hand, a telescopic cylinder features multiple stages or sleeves nested inside one another. This nested structure allows for a longer stroke length while keeping the retracted length compact.
- Stroke Length: The stroke length of a telescopic cylinder can be significantly longer compared to a standard hydraulic cylinder. The ability to extend in multiple stages allows for a greater overall stroke length, making telescopic cylinders suitable for applications that require extended reach or height adjustment.
- Retracted Length: While a standard hydraulic cylinder has a fixed retracted length equal to its stroke length, a telescopic cylinder offers a compact retracted length. The nested design enables the stages to retract inside one another, reducing the overall length of the cylinder when not in use. This compact retracted length is advantageous in applications with space constraints.
- Load Capacity: Telescopic cylinders are designed to handle substantial loads while maintaining stability. The nested structure provides increased load-bearing capacity compared to standard hydraulic cylinders. The stages distribute the load evenly, ensuring efficient load transfer throughout the extended stroke.
- Complexity and Maintenance: Telescopic cylinders are generally more complex in design compared to standard hydraulic cylinders. They require precise alignment of the stages and may include additional components such as locking mechanisms or guiding systems. This complexity can affect maintenance requirements and may require specialized inspection and servicing procedures.
- Application: Telescopic cylinders are commonly used in applications that require extended reach or height adjustment, such as cranes, dump trucks, aerial platforms, and material handling equipment. Standard hydraulic cylinders, on the other hand, are versatile and widely used in various applications, including industrial machinery, construction equipment, and agricultural machinery.
Despite these differences, both telescopic cylinders and standard hydraulic cylinders are essential components in hydraulic systems. They both rely on hydraulic fluid to generate force and provide linear motion. The selection of the cylinder type depends on the specific requirements of the application, including stroke length, retracted length, load capacity, and available space.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and maintenance of the hydraulic cylinder based on the specific application requirements.
editor by CX 2024-02-06
China supplier Long Stroke Mini Small Double Single Acting Lifting Telescopic Excavator CZPT 415 Arm Boom Bucket Hydraulic Cylinder vacuum pump ac system
Product Description
Company Profile
ZheJiang Zhongye Electromechanical Technology Co., LTD. is located in HangZhou High-tech International Enterprise Port Building 19, Liandong U Valley, High-tech Zone, HangZhou , ZheJiang Province, China.with a total investment of over 300 million yuan. Specializing in hydraulic piston pump, hydraulic valve, hydraulic motor, hydraulic cylinder and other hydraulic components research and development and remanufacturing.
Our boss has been engaged in the hydraulic industry for 36 years, and has a profound cultural background and understanding of the hydraulic field. He has successively established HangZhou CHINAMFG Excavator Co., LTD., ZheJiang CHINAMFG Fluid Transmission Co., LTD. In order to expand the operation and increase the export trade business, he introduced 2 directors with foreign investment experience to set up ZheJiang Zhongye Electromechanical Technology Co., LTD.
At Chairman, zhongye Electromechanical has close cooperation and exchanges with the leading universities in the field of fluid transmission in China, such as HangZhou Institute of Technology, and ZHangZhoug University, and has jointly established the “Fluid Transmission and Control Industry-University-Research Center” with HangZhou Institute of Technology, transforming scientific research theories into practical results. Determined to make the core characteristic service, and to do well, bigger, stronger, promote the common progress of the industry, drive the development of China’s hydraulic industry, to the world’s leading fluid transmission and control system.
Our Advantages
- We have a factory that produce pumps of KPM K3V/K5V/K7V series, The quality can be up to the same quality as the CHINAMFG , but the price is far below them. It has good cost performance because our boss has been in the hydraulic industry for 36 years, he is specializing in this technical research and is seriously at quality. If you have a market there, it will be a great advantage.
- In addition, we can also providing a variety of hydraulic parts for import brands. Some are we buy from CHINAMFG & CHINAMFG etc (china construction manufacturers )when they want to update the machine, but they has order the pumps motors…and the products will cause waste before they can be used, and we will buy from them that is why we can supply .
- Packaging: Adopt a variety of packaging and multiple protection to ensure the integrity of products.
- Double plastic bags: the inner layer is rust and oil proof, and the outer layer is double protection to prevent rain from affecting the external packaging and then affecting the product
- High elastic foam paper: secure and provide close protection to the product
- Wooden case: prevent direct impact on products during transportation
- Logistics: The company is equipped with logistics department and freight drivers to ensure the safety and timely delivery of goods to the designated place/warehouse/port.
- Certificates: CE and EAC (Russian customs union )
- Our factory is closed to ZheJiang port & HangZhou port.
FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in anti-rust treatment/polybag/foam boards and wooden cartons. If you have legally registered patent,we can pack the goods in your branded boxes after getting your authorization letters.
Q2. What is your terms of payment?
A: T/T 30% advance payment, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDP, DDU.
Q4. How about your delivery time?
A: Generally, it will take 5 to 10 days after receiving your advance payment if there are stock, otherwise it will take 20-25days. The specific delivery time depends on the items and the quantity of your order.
Q5. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the freight.
Q6. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery to ensure the quality of products.
Q7: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them,no matter where they come from.
Installation Instructions
1. oil purity In order to ensure the service life of the hydraulic cylinder, the hydraulic system must be set up in the filter, effectively prevent pollution, the purity of the oil should meet the ISO4406 standards, the quality of the filter should also meet the corresponding ISO standards. The actual condition of the filter shall be performed according to the system classification standard, but not lower than the minimum 19/15 rating of ISO4406, that is, the 24/15715 (beta) rating of ISO4572.
2. Hydraulic cylinder When the hydraulic cylinder needs to be stored for a period of time, the following methods are recommended: The hydraulic cylinder should be stored in a dry, clean, non-corrosive gas indoor environment, pay attention to protect the hydraulic cylinder from internal and external corrosion damage. The hydraulic cylinder should be as vertical as possible, and the piston rod upward, so that the hydraulic cylinder in the possibility of condensation caused by corrosion, and permanent deformation of the seal resulting in the weight of the piston and piston rod to a minimum. Hold oil port guard until connecting wire. Long-term storage, should be in the hydraulic cylinder piston on both sides of the filling application, to prevent corrosion in the cylinder. If the hydraulic cylinder is placed outside for a period of time, the unpainted surface such as the end of the piston rod should be protected.
3. One side under the protective cover of the hydraulic cylinder oil port can only be selected on the connecting line to prevent sundry entry. The connecting line must be cleaned and connected in series. The hydraulic system must be equipped with oil filter and tested regularly. In the case of a large number of fibers, fast drying chemicals adhesion, high temperature and splashing of impurities, the hydraulic cylinder must be unprotected. The piston rod should be fully tightened with load and checked regularly to prevent the connection thread from loosening; Irregular check guide rod end seal bushing and piston rod rotation deviation. The hydraulic cylinder must ensure the attachment of the piston rod and the connecting rod end, when the piston rod out and back in a straight line, otherwise it will lead to excessive wear of the gland and the cylinder, thus shortening the service life of the hydraulic cylinder. Different considerations for hydraulic cylinder installation During installation, it is recommended to choose thrust keys or thrust structures to resist the shear stress of the connection bolts. Rod mounting and extension lengths can be customized, and the installation torque is the same as the rod torque.
Certifications
Other Products
K3V63DTP-60E01 | K3V180DT-HN0P | K3V112DTP-9C79 |
K3V63DTP-60E02 | K3V180DTH-HN1V | K5V80DTP-9N05 |
K7V63DTP-0E13/0E23 | K3V63DT-9N2H | K5V80DTP-9C05 |
K3V112DTP-GYT6K | K3V63DT-9POH | K3V63DT-9N1S/9N01 |
K3V112DTP-G9TEL | K3V112DTP-9TCM | K3V63DT-9COS |
K3V112DTP-G9TDL | K3V112DTP-9T8L | K3V63DT-9N01 |
K3V112DTP-9T1L | K3V112DTP-0E11 | K3V112DT-9N3P |
K3V112DTP-9TBR | K5V140DTP-0E01 | K3V112DT-9N2A |
K3V112DTP-9TBS | K5V140DTP-9T1L | K3V140DT-9N04 |
K5V140DTP-YT6K | K5V160DTH-9T06 | K3V180DT-9N56 |
K5V140DTP-9TBR | K5V200DTH-9N1H | K3V180DTP-9N05 |
K5V140DTP-9TBS | K3V140DT-9TCM | K3V180DTH-9N2B |
K3V63DTP-9N2B | K3V140DT-9T1L | K3V180DT-9N69 |
K3V112DT-9C12 | K3V63DT-HNOV | K3V180DT-9C69 |
K3V63DT-9N2J | K3V63DT-9N4H | K3V180DTH-9N1S/9N4S |
K3V112DT-9N64 | K5V160DTH-9N4A | K3V180DTP-9COG |
K3V112DT-9N49 | K3V63DT-9N2H | K5V200DTH-9C0Z |
K5V140DT-9N25 | K7V63DTP | K3V63DT-HNOV |
K3V112DT-9N94 | K3V112DT-9NC9 | K3V112DT-9C02 |
K3V112DT-1E42 | K3V112DT-9ND9 | K3V112DT-HN0V |
K5V160DT-1E05 | K5V160DTH-9N3A | K3V112DT-HN0V |
K5V200DTH-9N2Y | K5V200DTH-9N1H | K3V112DTP-9N1T |
K5V200DTP-9N8X | K3V180DTH-HN1V | K3V180DT-HN0P |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Customization: |
Available
|
|
---|
How do telescopic cylinders handle variations in environmental conditions?
Telescopic cylinders are designed to handle variations in environmental conditions effectively. Here’s a detailed explanation:
Durable construction:
Telescopic cylinders are constructed with durable materials such as steel or high-strength alloys, which provide resistance to environmental elements. These materials are chosen for their ability to withstand harsh conditions, including temperature extremes, moisture, and exposure to chemicals or corrosive substances.
Sealing mechanisms:
Telescopic cylinders incorporate sealing mechanisms to protect the internal components from contaminants and maintain proper operation in different environments. The seals prevent the entry of dust, dirt, water, and other particles that could potentially damage the cylinder’s internal components or affect its performance. Seals also help retain the hydraulic fluid, ensuring optimal lubrication and preventing leakage.
Corrosion resistance:
Telescopic cylinders are often coated with protective finishes or treatments to enhance their corrosion resistance. These coatings, such as paint, powder coating, or specialized coatings like chrome plating, create a barrier between the cylinder’s surface and the surrounding environment, reducing the risk of corrosion. Corrosion-resistant materials and treatments are particularly crucial in outdoor or marine applications where exposure to moisture, saltwater, or chemicals is common.
Temperature considerations:
Telescopic cylinders are designed to handle variations in temperature. The materials used in their construction are selected to withstand both low and high temperature ranges. Additionally, the hydraulic fluid used in the cylinders is chosen based on its ability to maintain consistent performance across different temperature conditions. In extreme temperature environments, additional insulation or heating elements may be incorporated to ensure proper fluid viscosity and prevent freezing or overheating.
Environmental sealing:
In certain applications where telescopic cylinders are exposed to extreme environmental conditions, additional sealing measures may be implemented. Environmental seals are designed to provide extra protection against water, dust, or other contaminants that are prevalent in specific environments. These seals are typically more robust and durable to maintain the integrity of the cylinder in challenging conditions.
Regular maintenance:
To ensure optimal performance and longevity, regular maintenance is essential for telescopic cylinders. This includes inspecting and cleaning the cylinders, checking and replacing worn seals, monitoring fluid levels and quality, and addressing any signs of damage or wear. Maintenance intervals may vary depending on the operating conditions and manufacturer recommendations.
Overall, telescopic cylinders are engineered to handle variations in environmental conditions by incorporating durable construction, sealing mechanisms, corrosion resistance, temperature considerations, environmental sealing, and regular maintenance. These features contribute to the reliability, longevity, and performance of telescopic cylinders in diverse industrial applications.
Consulting with manufacturers or industry experts can provide further guidance on selecting telescopic cylinders that are suitable for specific environmental conditions.
How do telescopic cylinders contribute to precise reach and manipulation?
Telescopic cylinders play a crucial role in enabling precise reach and manipulation in various applications. Here’s a detailed explanation:
Extended reach:
Telescopic cylinders allow for extended reach in equipment such as cranes, excavators, booms, and material handling machinery. The nested design of telescopic cylinders, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access objects or work areas that are located at a distance.
Precise positioning:
Telescopic cylinders provide precise positioning capabilities, allowing operators to manipulate objects with accuracy. The hydraulic control system regulates the extension and retraction of each stage of the cylinder, enabling smooth and controlled movement. This precise control is essential in applications that require accurate placement or manipulation of objects, such as in construction, manufacturing, or material handling.
Load handling:
Telescopic cylinders contribute to precise load handling by providing the necessary force and control. The cylinders are designed to handle heavy loads and can exert the required power to lift, lower, or manipulate objects with precision. The hydraulic control system allows operators to adjust the speed and movement of the telescopic cylinder, ensuring safe and controlled load handling.
Adaptability:
Telescopic cylinders offer adaptability in reaching and manipulating objects in various environments. Their nested design allows for compact retraction, making them suitable for applications with limited space. The ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Support for attachments:
Telescopic cylinders often support attachments or tools that enhance reach and manipulation capabilities. For example, in excavators, telescopic cylinders are used to extend the boom or arm, while additional attachments such as buckets or grabs facilitate precise material handling or excavation tasks.
Overall, telescopic cylinders contribute to precise reach and manipulation by offering extended reach, precise positioning, load handling capabilities, adaptability, and support for attachments. Their hydraulic control system and nested design enable operators to achieve accurate and controlled movements, enhancing productivity and efficiency in various applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, operating parameters, and recommended maintenance practices to ensure optimal performance and safety.
What industries commonly use telescopic cylinders in their applications?
Telescopic cylinders find applications in a wide range of industries where extended reach, height adjustment, or lifting capabilities are required. Here’s a detailed explanation:
Industries commonly using telescopic cylinders:
- Construction: The construction industry extensively utilizes telescopic cylinders in various equipment, including excavators, backhoes, loaders, cranes, and concrete pumps. Telescopic cylinders enable the extension and retraction of booms, arms, or buckets, providing the necessary reach, digging, and lifting capabilities in construction and earthmoving applications.
- Material Handling and Logistics: Telescopic cylinders are essential in industries involved in material handling and logistics operations. This includes applications such as cranes, forklifts, loaders, conveyor systems, and automated storage and retrieval systems. Telescopic cylinders enable the lifting, tilting, or extending movements required for efficient loading, unloading, and transportation of materials.
- Agriculture: The agricultural sector employs telescopic cylinders in various machinery, such as tractors, harvesters, sprayers, and irrigation systems. Telescopic cylinders facilitate height adjustment, folding/unfolding of implements, and movement of equipment parts, enhancing productivity and efficiency in agricultural operations.
- Transportation and Automotive: Telescopic cylinders play a role in the transportation and automotive industries. They are used in applications such as dump trucks, trailers, refuse trucks, car haulers, and hydraulic ramps. Telescopic cylinders enable the efficient tilting, dumping, or lifting of cargo, enhancing the functionality and versatility of transportation equipment.
- Marine and Offshore: The marine and offshore industries utilize telescopic cylinders in applications such as ship cranes, offshore platforms, and subsea equipment. Telescopic cylinders enable the extension and retraction of booms, arms, or lifting mechanisms, supporting various marine operations including cargo handling, offshore construction, and underwater exploration.
- Mining and Quarrying: In mining and quarrying operations, telescopic cylinders are employed in equipment such as excavators, loaders, and conveyor systems. They facilitate the necessary extension and retraction movements for digging, lifting, and conveying materials, enhancing productivity and efficiency in mining operations.
- Utilities and Energy: The utilities and energy sectors utilize telescopic cylinders in applications such as utility trucks, aerial platforms, power line maintenance equipment, and renewable energy installations. Telescopic cylinders enable the safe and efficient access to elevated work areas, equipment maintenance, and positioning of components in energy infrastructure.
- Manufacturing and Industrial: Telescopic cylinders are found in manufacturing and industrial environments in various machinery, including automated systems, assembly lines, robotic arms, and material handling equipment. They provide the necessary linear motion and reach for precise positioning, lifting, or transferring of components during manufacturing processes.
These are just a few examples of industries that commonly use telescopic cylinders in their applications. The versatility and efficiency of telescopic cylinders make them valuable components in numerous sectors where extended stroke lengths or compact retracted lengths are required.
It’s important to consult industry-specific guidelines and regulations to ensure the proper selection, installation, and maintenance of telescopic cylinders based on the specific application requirements.
editor by CX 2024-02-04
China Custom Mini Piston Double Acting Hydraulic Cylinder for Quick Jack Parts vacuum pump adapter
Product Description
small piston double acting hydraulic lift ram cylinder
Product Description
Eaton, parker, hercules, prince, cross type double acting hydraulic cylinder are used for Trailer, Agricultural Machinery, Garbage Truck, Landing Platform etc.
Tsingshi hydraulic Customers, MAN, JAC, VOLVO, SHACMAN, DAF, JMC, HUNO, CIMC, SINOTRUK, TATRA,BENS,XIHU (WEST LAKE) DIS.FENG, FOTON,etc.
1.Piston rod electroplate hard chrome;
2.lighter and easier to maintenance double acting hydraulic cylinder;
3.High quality alloy seamless steel pipe have better mechanical properties;
4.The world famous brands of seals, such as Parker, Merkel, Hallite, Kaden, etc;
5.World-class processing technology ensures stable and reliable quality.
NO | ITEM | double acting hydraulic cylinder DATA |
1 | Material | Carbon Steel, Alloy Steel, 27SiMn,45#,20#,etc |
2 | Honed tube | 40-300mm, Heat treatment, honing, rolling |
3 | Honed tube | 30-280mm, plated nickel or hard Chrome or ceramic |
4 | Seal kit | Parker, Merkel, Hallite, Kaden, etc |
5 | Coating | Sandblasting, primer paint, middle paint, finish paint, Color can paint according to customer demands. |
6 | Technology | double acting hydraulic cylinder |
7 | Mounting type | Pin-eye , flange, trunnion mount,ball mount, screw thread. FC, FE, FEE, FSE,TPIN |
8 | Working medium | Hydraulic Oil |
9 | Working pressure | 16-20Mpa hydraulic lift cylinder |
10 | Temperature range | -50°C to +100°C |
Detailed Photos
Company Profile
Tsingshi hydraulic is a hydraulic telescopic cylinder for dump tipper truck company which takes up with hydraulic design, R&D, manufacturer, sell and service hydraulic products-small piston double acting hydraulic lift ram oil cylinder.
-double acting hydraulic cylinder Certification ISO9001 TS16949, etc;
-mini double acting hydraulic cylinder Export to North America, South America, Australia, South Korea, Southeast Asia, South Africa, Europe, Middle East, etc;
-ODM&OEM small double acting hydraulic cylinder according to client’s requirements;
-Professional manufacturer& supplier of Hydraulic Cylinders over 30 years;
-The micro double acting hydraulic cylinder can be used for Dump Truck, Tipper Truck, Trailer, Agricultural Machinery, Garbage Truck,Landing Platform etc; We can produce the follow brand hydraulic cylinder. HYVA, BINOTTO, EDBRO, PENTA, MAILHOT, CUSTOM HOIST, MUNCIE, METARIS, HYDRAULEX GLOBAL, HYCO, PARKER, COMMERCIAL HYDRAULICS, MEILLER. WTJX, XT, JX, HCIC, ZX, SZ, SJ.
CUSTOMERS PHOTOS
QUALITY GUARANTEE
HIGH QUALITITY GUARANTEE-double acting hydraulic cylinder
-7*24 service.
-Competitive price.
-Professional technical team.
-Perfect after-sales service system.
-ODM&OEM Hydraulic Cylinder according to customer needs.
-Strong Hydraulic Cylinder production capacity to ensure fast delivery.
-Guarantee Quality. Every process must be inspected, all products need be tested before leaving the factory.
<hydraulic cylinder Leak Test
<piston hydraulic cylinder Buffer Test
<hydraulic lift cylinder Reliability Test
<hydraulic ram cylinder Full Stroke Test
<hydraulic cylinder double acting Operation Test
<micro double acting hydraulic cylinder Pressure Tight Test
<small double acting hydraulic cylinder Load Efficiency Test
<double action hydraulic cylinder Start-up Pressure Test
<double acting hydraulic cylinder Testing the Effect of Limit
SALES AND SERVICE
PRODUCTS SERIES
ONE WORLD ONE LOVE
Certification: | CE, ISO/Ts16949 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?
Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:
1. Hydraulic Fluid and Pressure:
– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.
2. Piston and Cylinder Design:
– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.
3. Control Valves and Flow Control:
– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.
4. Cushioning and Damping:
– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.
5. Load Balancing:
– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.
6. Feedback and Control Systems:
– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.
7. Maintenance and Servicing:
– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.
In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.
Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders
Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:
- Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
- Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
- Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
- Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
- Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.
In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.
Can hydraulic cylinders be adapted for use in both industrial and mobile equipment?
Yes, hydraulic cylinders can be adapted for use in both industrial and mobile equipment. The versatility and adaptability of hydraulic systems make them suitable for a wide range of applications across various industries. Here’s a detailed explanation:
1. Industrial Equipment:
– Hydraulic cylinders are extensively used in industrial equipment such as manufacturing machinery, construction equipment, material handling systems, and heavy-duty machinery. They provide the necessary force and controlled movement for tasks such as lifting, pushing, pulling, and positioning heavy loads. Industrial hydraulic cylinders are typically designed for robustness, durability, and high load-bearing capacities to withstand the demanding environments and heavy-duty applications encountered in industries.
2. Mobile Equipment:
– Hydraulic cylinders are also widely adopted in mobile equipment, including agricultural machinery, mining equipment, forestry machinery, and transportation vehicles. These cylinders enable various functions such as tilting, lifting, steering, and stabilizing. Mobile hydraulic cylinders are designed to be compact, lightweight, and efficient to meet the specific requirements of mobile applications. They are often integrated into hydraulic systems that power multiple functions in a single machine.
3. Adaptability:
– One of the key advantages of hydraulic cylinders is their adaptability. They can be customized and configured to suit different operating conditions, equipment sizes, load capacities, and speed requirements. Hydraulic cylinder manufacturers offer a wide range of sizes, stroke lengths, mounting options, and rod configurations to accommodate diverse applications. This adaptability allows hydraulic cylinders to be utilized in both industrial and mobile equipment, serving various purposes across different sectors.
4. Mounting Options:
– Hydraulic cylinders can be adapted to different mounting arrangements to suit the specific requirements of industrial and mobile equipment. They can be mounted in various orientations, including vertical, horizontal, or at an angle. Different mounting options, such as flange mounts, trunnion mounts, and clevis mounts, provide flexibility in integrating hydraulic cylinders into different equipment designs.
5. Integration with Hydraulic Systems:
– Hydraulic cylinders are often part of a larger hydraulic system that includes components such as pumps, valves, hoses, and reservoirs. These systems can be tailored to meet the specific needs of both industrial and mobile equipment. The hydraulic system’s design and configuration can be adapted to provide the necessary flow rates, pressures, and control mechanisms required for optimal performance in the intended application.
6. Control and Automation:
– Hydraulic cylinders in both industrial and mobile equipment can be integrated with control systems and automation technologies. This allows for precise and automated control of the cylinder’s movement and function. Proportional control valves, sensors, and electronic controls can be incorporated to achieve accurate positioning, speed control, and synchronization of multiple hydraulic cylinders, enhancing overall equipment performance and productivity.
7. Safety Considerations:
– Hydraulic cylinders for both industrial and mobile equipment are designed with safety in mind. They often feature built-in safety mechanisms such as overload protection, pressure relief valves, and emergency stop systems to prevent accidents and equipment damage. Safety standards and regulations specific to each industry are taken into account during the design and adaptation of hydraulic cylinders for different applications.
Overall, hydraulic cylinders offer the adaptability and performance required for use in both industrial and mobile equipment. Their versatility, customizable features, mounting options, integration capabilities, and safety considerations make them suitable for a wide range of applications across diverse industries. Whether it’s heavy-duty industrial machinery or mobile equipment operating in challenging environments, hydraulic cylinders can be adapted to meet the specific needs and requirements of various equipment types.
editor by CX 2023-11-23