Product Description
Products Description
Product Name |
HSG Series Hydraulic Cylinder |
|||
Work Press |
7/14/16/21/31.5MPa 37.5/63MPa Can be Customized |
|||
Material |
Aluminum,Cast Iron,45mnb Steel,Stainless Steel |
|||
Bore Size |
40mm–320mm,Customizable |
|||
Shaft Diameter |
20mm–220mm,Customizable |
|||
Stroke Length |
30mm–14100mm,Customizable |
|||
Rod Surface Hardness |
HRC48-54 |
|||
Paint Color |
Black,Yellow,Blue,Brown,Customizable |
|||
Mounting |
Earring,Flange,Clevis.Foot,Trunnion,Customizable |
|||
Warrenty |
1 Year |
|||
MOQ |
1 Piece |
|||
Delivery Time |
7-15 Days,Also depands on specific demands |
|||
Certification |
ISO9001,CE |
Company Profile
QIANGLIN HYDRAULIC MACHINERY CO., LTD
QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner. |
FAQ:
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always our goal. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do telescopic cylinders contribute to energy-efficient equipment operation?
Telescopic cylinders play a significant role in promoting energy-efficient equipment operation. Here’s a detailed explanation:
Reduced energy consumption:
Telescopic cylinders are designed to minimize energy consumption during equipment operation. The hydraulic system of telescopic cylinders allows for precise control over the extension and retraction of the cylinder stages. This control enables the equipment to use the minimum amount of hydraulic fluid and energy required to achieve the desired movement or position.
Efficient force transmission:
Telescopic cylinders are engineered to efficiently transmit forces from the hydraulic system to the desired application. The telescopic design allows for a direct and linear transfer of force, reducing energy losses that can occur in more complex mechanical systems. This efficient force transmission ensures that the energy supplied to the telescopic cylinder is effectively utilized to perform the desired work.
Compactness and weight reduction:
Telescopic cylinders offer compactness in equipment design, which contributes to energy efficiency. By retracting the cylinder stages, the overall length of the equipment can be minimized, reducing weight and inertia. This reduction in weight and inertia requires less energy to start and stop the movement of the equipment, resulting in energy savings during operation.
Optimized design:
Telescopic cylinders are designed with efficiency in mind. Manufacturers consider factors such as the cylinder’s bore size, rod diameter, and overall construction to ensure optimal performance while minimizing energy requirements. By using lightweight and high-strength materials, optimizing the cylinder’s dimensions, and reducing internal friction, telescopic cylinders can operate efficiently and contribute to energy savings.
Controlled motion:
Telescopic cylinders provide precise and controlled motion, allowing equipment operators to perform tasks with accuracy and efficiency. The hydraulic control system in telescopic cylinders enables smooth and proportional extension and retraction, reducing the need for excessive force or multiple adjustments. This controlled motion prevents energy waste and ensures that the equipment operates efficiently.
Applications in energy-efficient equipment:
Telescopic cylinders are utilized in various energy-efficient equipment, such as hybrid or electric-powered machinery. These equipment types rely on the optimization of energy usage to minimize environmental impact and reduce operating costs. Telescopic cylinders contribute to these objectives by providing efficient force transmission, controlled motion, and compact design.
Furthermore, the integration of advanced technologies, such as electronic control systems, sensors, and feedback mechanisms, can enhance the energy efficiency of equipment that incorporates telescopic cylinders. These technologies allow for further optimization of hydraulic system performance, energy recovery, and intelligent control of equipment operations.
Overall, telescopic cylinders contribute to energy-efficient equipment operation through reduced energy consumption, efficient force transmission, compactness and weight reduction, optimized design, and controlled motion. By utilizing telescopic cylinders in equipment design and considering energy-efficient practices, industries can achieve more sustainable and economical operation.
Consulting with equipment manufacturers or industry experts can provide further insights into the energy-saving benefits and applications of telescopic cylinders in specific equipment types.
How do telescopic cylinders handle variations in cylinder size and capacity?
Telescopic cylinders are designed to handle variations in cylinder size and capacity effectively. Here’s a detailed explanation:
Modular design:
Telescopic cylinders feature a modular design that allows for flexibility in cylinder size and capacity. They consist of multiple stages or sections that retract inside one another, similar to a telescope. The number of stages can vary depending on the desired extended length and capacity of the cylinder. This modular design enables telescopic cylinders to be customized according to specific requirements.
Variable stroke length:
Telescopic cylinders offer the advantage of variable stroke length. The stroke length refers to the distance the cylinder can extend and retract. By adjusting the stroke length, the effective size and capacity of the telescopic cylinder can be modified. This flexibility allows for accommodating variations in the size and capacity requirements of different applications.
Increased capacity with additional stages:
Telescopic cylinders can handle variations in capacity by adding more stages to the cylinder. Each stage contributes to the overall capacity of the cylinder. By including additional stages, the cylinder’s capacity can be increased to handle higher loads or operate in more demanding conditions. This scalability makes telescopic cylinders suitable for a wide range of applications with varying capacity needs.
Proportional force distribution:
Telescopic cylinders distribute the applied force proportionally across the stages. As the cylinder extends, each stage contributes to supporting the load and transmitting the force. The force distribution ensures that the load is evenly distributed among the stages, allowing the cylinder to handle variations in capacity effectively.
Hydraulic control system:
Telescopic cylinders rely on a hydraulic control system for operation. The system allows for precise control over the extension and retraction of each stage. By adjusting the hydraulic pressure and flow, operators can regulate the movement and force exerted by the cylinder, ensuring optimal performance and capacity utilization.
Overall, telescopic cylinders handle variations in cylinder size and capacity through their modular design, variable stroke length, ability to add stages for increased capacity, proportional force distribution, and hydraulic control system. These features make telescopic cylinders adaptable to different applications and enable them to effectively handle varying size and capacity requirements.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the size, capacity, and operational considerations of telescopic cylinders.
Can telescopic cylinders be customized for specific machinery and equipment?
Yes, telescopic cylinders can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation:
Customizable stroke length:
Telescopic cylinders can be designed and manufactured with customized stroke lengths to suit the specific needs of machinery and equipment. The stroke length determines the maximum extension or retraction distance of the cylinder and can be tailored to match the required range of motion for a particular application.
Adjustable force and speed:
The hydraulic control system of telescopic cylinders allows for adjustability in terms of force and speed. The system can be configured to provide the necessary force output for the machinery or equipment, ensuring optimal performance. Additionally, the speed of extension and retraction can be adjusted to match the operational requirements, enabling precise and efficient operation.
Mounting options:
Telescopic cylinders can be customized with different mounting options to facilitate easy integration with specific machinery and equipment. Mounting configurations can vary depending on factors such as available space, mounting orientation, and compatibility with existing systems. Manufacturers can provide various mounting solutions to ensure seamless installation.
Sealing and protection:
In certain applications, telescopic cylinders may require specialized sealing and protection features. Manufacturers can customize the cylinder design to incorporate seals and protective coatings that are suitable for the working environment. This customization helps enhance the longevity and reliability of the cylinder, especially in harsh operating conditions.
Material selection:
Telescopic cylinders can be manufactured using different materials to meet specific machinery and equipment requirements. Material selection depends on factors such as load capacity, operating temperature, corrosion resistance, and weight considerations. Manufacturers can offer material options to ensure the cylinder’s compatibility and performance in the intended application.
Integration with control systems:
Telescopic cylinders can be integrated with control systems and sensors to enable advanced functionality and automation. Customization may involve incorporating position sensors, pressure sensors, or other feedback devices to provide real-time data and enhance the overall performance and safety of the machinery or equipment.
Overall, telescopic cylinders can be customized in terms of stroke length, force and speed adjustability, mounting options, sealing and protection features, material selection, and integration with control systems. This customization allows telescopic cylinders to be tailored to the specific requirements of machinery and equipment, ensuring optimal performance and functionality.
It’s important to collaborate with the manufacturer or a qualified expert to determine the appropriate customization options and ensure compliance with relevant industry standards and regulations.
editor by CX 2024-04-04
China wholesaler Lifting Multi-Section Telescopic Hydraulic Cylinder Custom Production Long Stroke 2500mm Multi-Section Telescopic Hydraulic Cylinder vacuum pump electric
Product Description
Factory Direct Sale Hydraulic Telescopic Hydraulic Cylinders Double Acting | |||
Part number | Tube dia mm | Rod dia mm | Stroke mm |
205-63-57100 | 120 | 85 | 1285 |
206-63-57100 | 120 | 85 | 1285 |
205-63-57160 | 120 | 85 | 1285 |
205-63-57120 | 135 | 95 | 1490 |
203-63-57130 | 125 | 85 | 1120 |
203-63-57131 | 125 | 85 | 1120 |
205-63-57130 | 125 | 85 | 1120 |
Specifications
1.Supply to USA,Europe,and Australia, Russia.
2.Material:Stainless Steel
3.Professional performance excavator parts supplier
4. High quality and low price
FAQ
Q1: Are you Manufacture or Trade Company?
A1: We are manufacture,we have 20 years experience for supply Metal material and products in domestic.
Q2: How can we guarantee quality?
A2: Always a pre-production sample before mass production;Always final Inspection before shipment;
Q3: What is your terms of payment ?
A3: 1.T/T: 30% deposit in advance, the balance 70% paid before shipment
2.30% down payment, the balance 70% paid against L/C at sight
3.CHINAMFG negotiation
Q4: Can you provide Certificates for aluminum materials ?
A4:Yes,we can supply MTC-Material Test Certificate.
Q5: Can you provide sample?
A5: Yes, we can provide you sample, but you need to pay for the sample and freight firstly. We will return the sample fee after
you make an order.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Piston Cylinder |
Adjusted Form: | Switching Type |
Customization: |
Available
|
|
---|
Can telescopic cylinders be used in both mobile and stationary machinery?
Yes, telescopic cylinders can be used in both mobile and stationary machinery. Here’s a detailed explanation:
Versatility:
Telescopic cylinders are highly versatile and can be integrated into a wide range of machinery, regardless of whether it is mobile or stationary. The modular design and customizable features of telescopic cylinders make them adaptable to various applications and industries.
Mobile machinery:
In mobile machinery, such as construction equipment, agricultural machinery, material handling vehicles, and truck-mounted cranes, telescopic cylinders play a crucial role. They are commonly used for tasks such as lifting and lowering loads, extending and retracting booms or arms, tilting or dumping containers, and providing stability and support. The compactness of telescopic cylinders is particularly advantageous in mobile machinery, where space constraints are common.
Stationary machinery:
Telescopic cylinders are also well-suited for stationary machinery, including industrial equipment, manufacturing machinery, hydraulic presses, and material processing systems. In these applications, telescopic cylinders are used for tasks such as lifting heavy objects, adjusting heights or positions, applying pressure or force, and controlling movements. The extended reach and high force output of telescopic cylinders make them suitable for stationary machinery that requires precise and controlled motion.
Common applications:
Telescopic cylinders can be found in a variety of common applications across both mobile and stationary machinery. Some examples include:
- Crane trucks: Telescopic cylinders enable the extension and retraction of crane booms, allowing for lifting and positioning of heavy loads at various heights and distances.
- Front-end loaders: Telescopic cylinders support the lifting and tilting of buckets or forks, facilitating material handling and loading operations.
- Dump trucks: Telescopic cylinders enable the tilting of dump truck beds, allowing for controlled unloading of materials.
- Scissor lifts: Telescopic cylinders provide vertical lifting and lowering capabilities, allowing for elevated work platforms and access to higher areas.
- Hydraulic presses: Telescopic cylinders apply force to compress or shape materials in manufacturing processes.
These examples illustrate the versatility and applicability of telescopic cylinders in both mobile and stationary machinery.
It’s important to consider the specific requirements of each machinery application and consult with manufacturers or industry experts to ensure the selection and integration of telescopic cylinders that meet the operational needs and safety standards.
Can telescopic cylinders be used in forestry equipment for tree handling?
Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:
Tree felling and extraction:
Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.
Boom and arm extension:
In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.
Precise control:
Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.
Load handling and stacking:
Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.
Stability and balance:
Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.
Advantages of telescopic cylinders in forestry equipment:
Telescopic cylinders offer several advantages in tree handling applications:
- Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
- Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
- Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
- Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
- Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.
Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.
How does a telescopic cylinder contribute to precise reach and positioning?
A telescopic cylinder plays a crucial role in achieving precise reach and positioning in various applications. Here’s a detailed explanation:
Nested structure:
The nested structure of a telescopic cylinder, consisting of multiple stages or sleeves that retract inside one another, enables precise reach and positioning. Each stage can be extended or retracted individually, allowing for incremental adjustments in the cylinder’s length. This modular design provides fine-tuning capabilities, enabling operators to achieve the desired reach and positioning with accuracy.
Controlled extension and retraction:
The hydraulic control system of a telescopic cylinder ensures controlled extension and retraction of the stages. By regulating the flow of hydraulic fluid to each stage, operators can precisely control the speed and movement of the cylinder. This control allows for smooth and gradual extension or retraction, facilitating precise reach and positioning without abrupt or jerky movements.
Adjustable stroke length:
Telescopic cylinders offer the advantage of adjustable stroke length. The hydraulic system can be adjusted to vary the extension and retraction distance, allowing for customization based on the specific reach and positioning requirements of the application. This adjustability enables operators to adapt the cylinder’s stroke length to different tasks and working conditions, ensuring precise and optimized reach.
Position feedback systems:
In some applications, telescopic cylinders may be equipped with position feedback systems. These systems utilize sensors or transducers to provide real-time feedback on the cylinder’s extension or retraction position. By monitoring the position, operators can precisely track and control the reach and positioning of the cylinder, enhancing accuracy and repeatability.
Stability and rigidity:
Telescopic cylinders are designed to maintain stability and rigidity during operation. The nested structure, along with the hydraulic system, helps minimize unwanted oscillations or vibrations that could affect reach and positioning accuracy. This stability ensures that the cylinder maintains its intended position without undesired movement or deflection.
Overall, a telescopic cylinder contributes to precise reach and positioning through its nested structure, controlled extension and retraction, adjustable stroke length, position feedback systems (if equipped), and stability. These features enable operators to achieve accurate and repeatable reach and positioning in various applications.
It’s important to consult the manufacturer’s guidelines and specifications, as well as follow proper maintenance practices, to ensure the reliable and precise performance of telescopic cylinders in achieving reach and positioning requirements.
editor by CX 2024-04-04
China OEM Extension Cylinder 7 Ton and 12 Ton 3 Stages Hydraulic Telescopic Cylinder for Canadian Tipping Trailer vacuum pump design
Product Description
Products Description
Product Name |
HSG Series Hydraulic Cylinder |
|||
Work Press |
7/14/16/21/31.5MPa 37.5/63MPa Can be Customized |
|||
Material |
Aluminum,Cast Iron,45mnb Steel,Stainless Steel |
|||
Bore Size |
40mm–320mm,Customizable |
|||
Shaft Diameter |
20mm–220mm,Customizable |
|||
Stroke Length |
30mm–14100mm,Customizable |
|||
Rod Surface Hardness |
HRC48-54 |
|||
Paint Color |
Black,Yellow,Blue,Brown,Customizable |
|||
Mounting |
Earring,Flange,Clevis.Foot,Trunnion,Customizable |
|||
Warrenty |
1 Year |
|||
MOQ |
1 Piece |
|||
Delivery Time |
7-15 Days,Also depands on specific demands |
|||
Certification |
ISO9001,CE |
Company Profile
QIANGLIN HYDRAULIC MACHINERY CO., LTD
QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner. |
FAQ:
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always our goal. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do telescopic cylinders contribute to efficient and controlled extension and retraction?
Telescopic cylinders play a crucial role in enabling efficient and controlled extension and retraction. Here’s a detailed explanation:
Nested design:
The nested design of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for efficient extension and retraction. Each stage extends or retracts in a synchronized manner, contributing to smooth and controlled movement. The nested structure also enables compact storage when the cylinder is retracted, optimizing space utilization.
Hydraulic control system:
The hydraulic control system is a key component that enables efficient and controlled extension and retraction of telescopic cylinders. It utilizes hydraulic fluid and pressure to drive the cylinder’s movement. By regulating the flow of hydraulic fluid to each stage, the extension and retraction speed can be precisely controlled. This hydraulic control system ensures synchronized movement of the stages and allows for gradual and controlled extension and retraction.
Valve and cylinder design:
Telescopic cylinders incorporate specific valve and cylinder designs to facilitate efficient and controlled extension and retraction. Flow control valves, such as flow restrictors or throttle valves, are often used to regulate the flow rate of hydraulic fluid to each stage. These valves help manage the speed of extension and retraction, preventing sudden or uncontrolled movements. The cylinder design, including the bore size and rod diameter, is carefully engineered to optimize the balance between extension/retraction speed and force output.
Pressure relief and damping:
To further enhance controlled extension and retraction, telescopic cylinders may incorporate pressure relief and damping mechanisms. Pressure relief valves help prevent over-pressurization of the hydraulic system, ensuring that the cylinder operates within safe limits. Damping devices, such as hydraulic cushions or shock absorbers, can be integrated to dampen the impact or vibrations during extension and retraction, promoting smoother and more controlled movement.
Load-specific adjustments:
Telescopic cylinders can be adjusted to accommodate different load requirements, contributing to efficient and controlled extension and retraction. By adding or removing stages or adjusting the hydraulic pressure, operators can adapt the cylinder’s performance to match the specific load conditions. This customization ensures optimal extension and retraction characteristics for different applications and load capacities.
Overall, the nested design, hydraulic control system, valve and cylinder design, pressure relief mechanisms, and load-specific adjustments all work together to enable telescopic cylinders to contribute to efficient and controlled extension and retraction. These features ensure smooth operation, precise positioning, and safe handling of heavy loads in various industrial applications.
Consulting the manufacturer’s documentation and guidelines is important for understanding the specific capabilities and limitations of telescopic cylinders in terms of extension and retraction.
Can telescopic cylinders be used in agricultural machinery for various tasks?
Yes, telescopic cylinders are widely used in agricultural machinery for various tasks. Here’s a detailed explanation:
Versatile applications:
Telescopic cylinders offer versatility and are suitable for a wide range of tasks in agricultural machinery. They are commonly employed in equipment such as tractors, harvesters, sprayers, loaders, and tillers.
Lifting and lowering:
Telescopic cylinders are utilized for lifting and lowering applications in agricultural machinery. They provide the necessary force to raise and lower attachments such as loader buckets, tillage implements, or harvest platforms. The telescopic cylinder’s design allows for efficient force transmission, enabling smooth and controlled movement.
Reach extension:
Telescopic cylinders are valuable for extending the reach of agricultural machinery. For example, in a harvester, telescopic cylinders can extend the reach of the harvesting arm, allowing operators to access crops in a broader area. This extension capability increases efficiency and productivity by reducing the need for repositioning the machinery frequently.
Adjustable working height:
Telescopic cylinders are employed in agricultural machinery to provide adjustable working heights. For instance, in sprayers or spreaders, telescopic cylinders can adjust the height of the booms or spreading mechanisms, allowing for precise application of fertilizers, pesticides, or seeds.
Folding and unfolding:
Telescopic cylinders are used to facilitate folding and unfolding actions in agricultural machinery. This is particularly useful for equipment that needs to be transported or stored in compact configurations. For example, telescopic cylinders can fold the wings of a tillage implement for easy transport on roads or through narrow gateways.
Stabilization and leveling:
Telescopic cylinders contribute to the stabilization and leveling of agricultural machinery. They are employed in tasks such as adjusting the height and angle of plows, cultivators, or balers to ensure proper ground engagement and uniform performance.
Advantages of telescopic cylinders in agricultural machinery:
Telescopic cylinders offer several advantages in agricultural machinery:
- Versatility: Telescopic cylinders can be used for various tasks, providing flexibility and adaptability in agricultural operations.
- Efficient force transmission: The telescopic design allows for direct and efficient force transmission, maximizing the equipment’s lifting and operational capabilities.
- Precise control: Telescopic cylinders enable precise control over movements, allowing for accurate positioning and improved productivity.
- Space optimization: Telescopic cylinders contribute to space optimization by enabling folding or compact configurations, facilitating transportation and storage of agricultural machinery.
Overall, telescopic cylinders are valuable components in agricultural machinery, offering versatility, efficient force transmission, precise control, and space optimization. They enhance the functionality and productivity of agricultural equipment across various tasks and applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in agricultural machinery.
What is a telescopic cylinder and how does it work?
A telescopic cylinder is a type of hydraulic cylinder that consists of multiple nested stages or sections that can extend and retract, similar to a telescope. Here’s a detailed explanation:
A telescopic cylinder is primarily used when a long stroke length is required while maintaining a compact retracted length. It is commonly used in applications such as dump trucks, cranes, aerial platforms, and other equipment that require extended reach or height adjustment. Here’s how a telescopic cylinder works:
- Structure: A telescopic cylinder consists of a series of cylindrical stages or sleeves that are progressively nested inside one another. These stages are typically made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application.
- Extension and Retraction: When the telescopic cylinder is in the retracted position, the stages are nested inside one another, with the smallest stage located at the base. To extend the cylinder, hydraulic fluid is supplied to the base of the cylinder, creating pressure that pushes the smallest stage outwards. As the smallest stage extends, it exposes the next larger stage, which is then pushed out by the hydraulic pressure. This process continues until all the stages have extended, resulting in a longer overall stroke length.
- Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
- Retraction: To retract the telescopic cylinder, hydraulic fluid is supplied to the opposite side of the cylinder, typically to the largest stage. The hydraulic pressure acts on the largest stage, retracting it first. As each stage retracts, it nests inside the next smaller stage until the cylinder is fully retracted to its original compact length.
- Control and Stability: The extension and retraction of a telescopic cylinder are controlled by a hydraulic system. By regulating the flow and pressure of the hydraulic fluid, operators can precisely control the extension and retraction speed of the cylinder. The nested design of the stages provides stability and load-bearing capacity, allowing the telescopic cylinder to handle substantial loads.
The use of telescopic cylinders offers several benefits:
- Extended Stroke Length: Telescopic cylinders provide a significantly longer stroke length compared to traditional single-stage cylinders, enabling extended reach or height adjustment without increasing the overall size of the cylinder.
- Compact Design: The nested structure of telescopic cylinders allows for a compact retracted length, making them suitable for applications with space constraints.
- Versatility: Telescopic cylinders can be customized to meet specific stroke length requirements. The number of stages can be adjusted, and the cylinders can be designed for different load capacities and working conditions.
- Efficient Operation: The controlled extension and retraction of telescopic cylinders enable precise load handling and positioning, improving operational efficiency.
Overall, a telescopic cylinder is a hydraulic cylinder with nested stages that can extend and retract, providing an extended stroke length while maintaining a compact retracted length. Its structure and operation make it ideal for applications requiring long reach or height adjustment.
It’s important to follow the manufacturer’s guidelines and specifications for the telescopic cylinder, including proper maintenance and inspection, to ensure its safe and reliable operation.
editor by CX 2024-04-04
China Hot selling The Middle Ear Shaft of The Link Head 63 36-500 Hydraulic Cylinder vacuum pump engine
Product Description
Solutions Provider of Hydraulic Cylinder
Product Description
As the professional manufacturer of hydraulic cylinder in China, we can offer you custom products to fulfill every requirement for the hydraulic cylinder market.
-Customized Sizes
-Customized Colors
-Customized Designs
-Customized Packages
-More Requirements Available
The objectives of our business are to provide high quality products and services at a cost effective price.
Seal |
Parker, Merkel, NOK, Hallite,etc. |
Helps Links
To get a free sample, please click here |
Paint |
Red, Grey, Yellow, Black, etc. |
|
Material |
ST52, CK45, 4140, Duplex2205, |
|
Certificate |
ABS, Lloyds, SGS, etc. |
|
Core components |
Bearing, Pressure vessel, Pump |
|
Non-standard |
Yes |
|
Structure |
Piston Type, Plunger Type, Telescopic Type |
|
Power |
Hydraulic & Pneumatic |
|
Brand |
Guoyue |
|
Sample |
Available |
Contact the experts at Guoyue today for all your cylinder requirements.
Our Advantages
We have many advantages that will help a lot to your business, including but not limited to:
1. Equipped with State-of-the-art Production Lines
Guoyue has introduced and absorbed advanced hydraulic design and production technologies from European (such as German) and American countries, ensuring that its design and manufacturing capabilities are consistently aligned with international advanced hydraulic cylinder technology.
2. Strict QC Process Before Shipping
The company emphasizes strict quality control, with each production process following standardized operating procedures, and comprehensive management systems in place to ensure that every product is processed to perfection.
3. Success in Many Projects
We have served clients with a diverse range of cylinder requirements, including construction projects, waste management, food industry, mining, infrastructure repairs, metal production, marine, agriculture, oil & gas and more applications.
4. Professional Support in Design, Samples and Bulk Order
As we have our own factories, the more benefits you can get from us:
—–We can get the production done based on the designs, reference pictures, even your drafts.
—–There is no limit of minimum order quantity, and we never refuse the small order, even 1 unit.
—–We can offer you the free samples to check if you buy it in large quantites.
Successful Projects
As the leader in custom hydraulic cylinder design and manufacturing, we have been successful in lot of projects, including
- Aerospace industry: Particularly for such devices as landing gears and CHINAMFG flaps
- Aerial Work Platforms (AWP)
- Agricultural: Small spraying equipment as well as harvesters, loaders and tractors
- Automotive
- Civil Engineering: Bulldozers, excavators, trenchers as well as attachments
- Construction: Concrete pumps and paving applications
- Energy: Flow controls for water gates
- Food, production and manufacturing
- Forestry and logging
- Motorway repairs and maintenance
- Mining
- Materials handling: Single acting hydraulic cylinders for sale are commonly employed in such equipment
- Mechanical engineering: Operation for feeding devices as well as automated production lines, plastic forming machines and transportation devices
- Oil and gas industries
- Recycling plants: Compressing scrap metal and other materials
- Shipbuilding: Steering devices
Company Profile
Guoyue Hydraulic Equipment Manufacturing (ZheJiang ) Co., Ltd., is a high-technology enterprise that integrates research, design, development, production, operation, and service, specializing in the production of hydraulic cylinders, including single acting cylinders, double acting Cylinders, nested cylinders, rotating cylinder, low height cylinders, high tonnage cylinders, tie-rod cylinders and more.
With a registered capital of 50 million Chinese Yuan, the company covers an area of 10, 000 sqft, with more than 100 employees. Also, certified with ISO 9001/ISO 14001/ISO 45001 and many own patents, our products have been approved by clients all over the world, including USA, Europe, Middle East, Middle Asia, Southeast Asia and more countries & areas.
As the leader in custom hydraulic cylinder design and manufacturing, Guoyue serves Original Equipment Manufacturers (OEMs) with custom and innovative hydraulic cylinder solutions. The team at Guoyue liaises closely with each customer to engineer and produce cylinders for machinery, equipment or projects that incorporate cylinders into their hydraulic systems.
We work directly with engineers, business owners, procurement teams, project managers, and technical specialists who often require a custom approach to their cylinder specifications – in terms of fit, function, and overall performance.
Also, Guoyue has introduced and absorbed advanced hydraulic product design and production technologies from Germany and other European and American countries, ensuring that its design and manufacturing capabilities are consistently aligned with international advanced hydraulic cylinder technology.
We have served clients with a diverse range of cylinder requirements. We have extensive experience working within many industries and the unique needs of each – including construction projects, waste management, food Industry, mining, infrastructure repairs, metal production, marine, agriculture, oil & gas and more applications.
Guoyue employees are at the heart of our operations. It is through the dedication of our team at Guoyue that we can consistently deliver the exact services and products required by every client.
Contact the experts at Guoyue today for all your cylinder requirements.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | 1MPa |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 1/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?
Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:
1. Hydraulic Fluid and Pressure:
– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.
2. Piston and Cylinder Design:
– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.
3. Control Valves and Flow Control:
– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.
4. Cushioning and Damping:
– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.
5. Load Balancing:
– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.
6. Feedback and Control Systems:
– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.
7. Maintenance and Servicing:
– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.
In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.
Handling the Challenges of Minimizing Fluid Leaks and Contamination in Hydraulic Cylinders
Hydraulic cylinders face challenges when it comes to minimizing fluid leaks and contamination, as these issues can impact the performance, reliability, and lifespan of the system. However, there are several measures and design considerations that help address these challenges effectively. Let’s explore how hydraulic cylinders handle the challenges of minimizing fluid leaks and contamination:
- Sealing Systems: Hydraulic cylinders employ advanced sealing systems to prevent fluid leaks. These systems typically include various types of seals, such as piston seals, rod seals, and wiper seals. The seals are designed to create a tight and reliable barrier between the moving components of the cylinder and the external environment, minimizing the risk of fluid leakage.
- Seal Material Selection: The choice of seal materials is crucial in minimizing fluid leaks and contamination. Hydraulic cylinder manufacturers carefully select seal materials that are compatible with the hydraulic fluid used and resistant to wear, abrasion, and chemical degradation. This ensures the longevity and effectiveness of the seals, reducing the likelihood of leaks or premature seal failure.
- Proper Installation and Maintenance: Ensuring proper installation and regular maintenance of hydraulic cylinders is essential for minimizing fluid leaks and contamination. During installation, attention should be given to proper alignment, torqueing of bolts, and adherence to recommended procedures. Regular maintenance includes inspecting seals, replacing worn-out components, and addressing any signs of leakage promptly. Proper maintenance practices help identify and rectify issues before they escalate and cause significant problems.
- Contamination Control: Hydraulic cylinders incorporate measures to control contamination and maintain fluid cleanliness. This includes the use of filtration systems, such as in-line filters, to remove particles and contaminants from the hydraulic fluid. Additionally, hydraulic reservoirs often have breathers and desiccant filters to prevent moisture and airborne contaminants from entering the system. By controlling contamination, hydraulic cylinders minimize the risk of damage to internal components and maintain optimal system performance.
- Environmental Protection: Hydraulic cylinders may be equipped with protective features to safeguard against external contaminants. For example, bellows or protective boots can be installed to shield the rod and seals from debris, dirt, or moisture present in the operating environment. These protective measures help extend the life of the seals and enhance the overall reliability of the hydraulic cylinder.
In summary, hydraulic cylinders employ sealing systems, appropriate seal materials, proper installation and maintenance practices, contamination control measures, and environmental protection features to handle the challenges of minimizing fluid leaks and contamination. By implementing these measures, manufacturers can ensure reliable and long-lasting hydraulic cylinder performance, minimize the risk of fluid leakage, and maintain the cleanliness of the hydraulic system.
How do hydraulic cylinders generate force and motion using hydraulic fluid?
Hydraulic cylinders generate force and motion by utilizing the principles of fluid mechanics, specifically Pascal’s law, in conjunction with the properties of hydraulic fluid. The process involves the conversion of hydraulic energy into mechanical force and linear motion. Here’s a detailed explanation of how hydraulic cylinders achieve this:
1. Pascal’s Law:
– Hydraulic cylinders operate based on Pascal’s law, which states that when pressure is applied to a fluid in a confined space, it is transmitted equally in all directions. In the context of hydraulic cylinders, this means that when hydraulic fluid is pressurized, the force is evenly distributed throughout the fluid and transmitted to all surfaces in contact with the fluid.
2. Hydraulic Fluid and Pressure:
– Hydraulic systems use a specialized fluid, typically hydraulic oil, as the working medium. This fluid is stored in a reservoir and circulated through the system by a hydraulic pump. The pump pressurizes the fluid, creating hydraulic pressure that can be controlled and directed to various components, including hydraulic cylinders.
3. Cylinder Design and Components:
– Hydraulic cylinders consist of several key components, including a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.
4. Fluid Input and Motion:
– To generate force and motion, hydraulic fluid is directed into one side of the cylinder, creating pressure on the corresponding surface of the piston. This pressure is transmitted through the fluid to the other side of the piston.
5. Force Generation:
– The force generated by a hydraulic cylinder is a result of the pressure applied to a specific surface area of the piston. The force exerted by the hydraulic cylinder can be calculated using the formula: Force = Pressure × Area. The area is determined by the diameter of the piston or the piston rod, depending on which side of the cylinder the fluid is acting upon.
6. Linear Motion:
– As the pressurized hydraulic fluid acts on the piston, it generates a force that moves the piston in a linear direction within the cylinder. This linear motion is transferred to the piston rod, which extends or retracts accordingly. The piston rod can be connected to external components or machinery, allowing the generated force to perform various tasks, such as lifting, pushing, pulling, or controlling mechanisms.
7. Control and Regulation:
– The force and motion generated by hydraulic cylinders can be controlled and regulated by adjusting the flow of hydraulic fluid into the cylinder. By regulating the flow rate, pressure, and direction of the fluid, the speed, force, and direction of the cylinder’s movement can be precisely controlled. This control allows for accurate positioning, smooth operation, and synchronization of multiple cylinders in complex machinery.
8. Return and Recirculation of Fluid:
– After the hydraulic cylinder completes its stroke, the hydraulic fluid on the opposite side of the piston needs to be returned to the reservoir. This is typically achieved through hydraulic valves that control the flow direction, allowing the fluid to return and be recirculated in the system for further use.
In summary, hydraulic cylinders generate force and motion by utilizing the principles of Pascal’s law. Pressurized hydraulic fluid acts on the piston, creating force that moves the piston in a linear direction. This linear motion is transferred to the piston rod, allowing the generated force to perform various tasks. By controlling the flow of hydraulic fluid, the force and motion of hydraulic cylinders can be precisely regulated, contributing to their versatility and wide range of applications in machinery.
editor by CX 2024-04-03
China supplier 2024 Newly Hot Selling Double Acting Hydraulic Oil Cylinder Made in China Factory Price for Wholesale vacuum pump engine
Product Description
2571 Newly Hot Selling Double Acting Hydraulic Oil Cylinder Made in China Factory Price
Hydraulic Cylinder
Hydraulic cylinders are important components in earth-moving machines, such as excavators and wheel loaders, as they transform hydraulic force into linear movement, by facilitating the lifting and moving of heavy materials.
Technical Specifications
Part Name |
Excavator Hydraulic Cylinder |
Material | Q345B+40CR |
Finish |
Smooth |
Colors |
Black or yellow or blue or orange |
Types |
hydraulic bucket cylinder/ arm cylinder/ boom cylinder |
Surface Hardness | HRC49-55 |
Warranty time | one year |
Certificate | ISO9001:2015 |
Related parts | H link, link rods, bucket tooth, adaptor, teeth pin and lock, excavator boom and arm, undercarriage parts, excavator bucket |
Detailed Photos
Features
High Strength
1.Joint development of new high-strength steel pipes with CHINAMFG domestic special steel enterprises
2.Increase Work pressure
High Performance
1. On average, about 20 seconds faster than similar products
2. Reduced working time by 19%
Light Weight
1. The lightest weight to win the biggest lift
2. Steel pipe and hydraulic combined weight loss is about 17%
3. Working oil volume reduced by 16%
Excellent Design
1. Optimized design, cylinder bore is reduced, working pressure is increased
2. Using imported brand seals
3. Respond to 2 kinds of severe conditions of high temperature and low temperature
4. Can adapt to -40 °C -110 °C working temperature
5. Apply 5 utility model patents
Manufacturing Capabilities
Welded Designs with 1″ to 20″ Bores
Tie Rod Designs with 2″ to 5″ Bores
Telescopic Designs, Single & Double Acting
Large Bore Hydraulic Cylinders
Stroke Lengths up to 50 Feet
Designed for Pressures up to 7,500 PSI
Custom Cylinder Features
Integrated Linear Position Sensors
Built-in Valves and Manifolds
Double Ended cylinder designs
Piggyback cylinder designs
Integrated Cushioning and Rephasing
Safety Designs with Velocity Fuses
Spherical and High-Wear Bushings
Custom Mounts and End Fittings
High-Strength / Weight-saving Materials
Color-matched Paint and Labeling
Packaging & Shipping
Company Profile
HangZhou Packway Technology Development Co., LTD, founded in March 2005, has been at the forefront of innovation, constantly striving to develop cutting-edge technologies and solutions. With our headquarters located in HangZhou,we currently operate 3 subsidiary companies, each connected with different sectors of the machinery market.
Certificate Passed
Our factory has passed the certificate: ISO9001/ISO14001/CE/ROHS
FAQ
Q1: Are you a trading company or a manufacturer ?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 20-35 working days if we don’t. but it also depends on the product
requirements and quantity.
Q4: Do you provide samples? Are the samples free or not?
A: Yes, we can provide samples, but they are non-free of charge.
Q5: What is your payment term?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to contact us.
Q6: What are your after-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in solving customers’ problems is always our goal. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | 2500psi/3000psi |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Rotary |
Adjusted Form: | Regulated Type |
Samples: |
US$ 800/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can hydraulic cylinders be integrated with advanced control systems and automation?
Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:
1. Electronic Control:
– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.
2. Closed-Loop Control:
– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.
3. Proportional and Servo Control:
– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.
4. Human-Machine Interface (HMI):
– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.
5. Communication and Networking:
– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.
6. Automation and Sequential Control:
– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.
7. Predictive Maintenance and Condition Monitoring:
– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.
In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.
Customization of Hydraulic Cylinders for Marine and Offshore Applications
Yes, hydraulic cylinders can be customized for use in marine and offshore applications. These environments present unique challenges, such as exposure to corrosive saltwater, high humidity, and extreme operating conditions. Customization allows hydraulic cylinders to meet the specific requirements and withstand the harsh conditions encountered in marine and offshore settings. Let’s delve into the details of how hydraulic cylinders can be customized for marine and offshore applications:
- Corrosion Resistance: Marine and offshore environments expose hydraulic cylinders to corrosive elements, such as saltwater. To mitigate corrosion, hydraulic cylinders can be customized with materials and surface treatments that provide enhanced corrosion resistance. For example, cylinders can be constructed from stainless steel or coated with protective layers like chrome plating or specialized coatings to withstand the corrosive effects of saltwater.
- Sealing and Environmental Protection: Hydraulic cylinders for marine and offshore applications require robust sealing systems to prevent water ingress and protect internal components. Customized sealing solutions, such as high-quality seals, wipers, and gaskets, can be employed to ensure effective sealing and resistance to water, debris, and contaminants. Additionally, hydraulic cylinders can be designed with protective features like bellows or boots to shield vulnerable areas from environmental elements.
- High-Pressure and Shock Resistance: Marine and offshore operations may involve high-pressure hydraulic systems and encounters with dynamic loads or shocks. Customized hydraulic cylinders can be engineered to withstand these demanding conditions. They can be designed with reinforced construction, thicker walls, and specialized components to handle high-pressure applications and absorb shock loads, ensuring reliable performance and durability.
- Temperature and Fluid Compatibility: Marine and offshore applications can expose hydraulic cylinders to extreme temperature variations and specific fluid requirements. Customization allows the selection of materials, seals, and fluids compatible with the anticipated temperature range and the specific fluid being used. Hydraulic cylinders can be tailored to maintain optimal performance and reliability under challenging temperature conditions and with the designated fluid type.
- Mounting and Integration: Customized hydraulic cylinders can be designed to facilitate easy integration and mounting within marine and offshore machinery. Mounting options can be tailored to suit the available space and structural requirements of the equipment. Additionally, customized hydraulic cylinder designs can incorporate features for easy maintenance, accessibility, and connection to the hydraulic system, ensuring convenient installation and serviceability in marine and offshore applications.
In summary, hydraulic cylinders can be customized to meet the unique demands of marine and offshore applications. Customization enables the integration of corrosion-resistant materials, robust sealing systems, high-pressure and shock-resistant designs, temperature and fluid compatibility, as well as optimized mounting and integration features. By tailoring hydraulic cylinders to the specific requirements of marine and offshore environments, reliable performance, extended service life, and efficient operation can be achieved in these challenging operating conditions.
Can you explain the role and significance of hydraulic cylinders in machinery?
Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:
Role of Hydraulic Cylinders:
– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.
– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.
– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.
– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.
– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.
Significance of Hydraulic Cylinders:
– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.
– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.
– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.
– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.
– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.
– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.
Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.
editor by CX 2024-04-03
China Best Sales Customized Dump Truck Telescopic Hydraulic Cylinder for Coal Mining Machinery vacuum pump electric
Product Description
Product Description
There are 2 main types of F lifting mechanism and T lifting mechanism.
It can meet the lifting requirement from 8 tons-45 tons, and the hydraulic cylinder has a limiting device and a buffer device.
Production KRM series lifting institutions are sold to Southeast Asia and Africa.
HG-E198*875EZ technical parameters |
1.Cylinder diameter:Ø198 |
2.Piston rod diameter:Ø80 |
3.Stroke:875 |
4.Rated pressure:16Mpa |
Closed length:1275 |
Company Profile
Certifications
Packaging & Shipping
FAQ
Q1: Can your cylinders with HYVA ones?
Yes, our cylinders can replace HYVA ones well, with same technical details and mounting sizes
Q2: What’s your cylinder’s advantages?
The cylinders are made under strictly quality control processing.
All the raw materials and seals we used are all from world famous companies.
Cost effective
Q3: When your company be established ?
Our company be established in 1996, and we are professional for hydraulic cylinders for more than 25 years.
And we had passed IATF 16949:2016 Quality control system.
Q4: How about the delivery time ?
For samples about 20 days. And 15 to 30 days about mass orders.
Q5: How about the cylinder’s quality gurantee?
We have 1 year quality grantee of the cylinders.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001, IATF 16949:2016 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What advantages do telescopic cylinders offer in heavy equipment?
Telescopic cylinders offer several advantages in heavy equipment applications. Here’s a detailed explanation:
Compact design:
Telescopic cylinders have a compact design that allows for a relatively small retracted length compared to their extended length. This compactness is advantageous in heavy equipment where space is limited. The reduced length enables the equipment to have a smaller footprint, making it easier to maneuver in confined areas and transport on trailers or trucks.
Extended reach:
Telescopic cylinders provide extended reach capabilities, which is beneficial in heavy equipment operations. The nested design allows for multiple stages to extend, enabling the cylinder to reach greater distances. This extended reach is particularly useful in applications where the equipment needs to lift or push loads over obstacles, reach into deep pits, or access elevated areas.
High force output:
Telescopic cylinders are capable of generating high force output, making them suitable for heavy lifting and pushing tasks. The hydraulic system used in telescopic cylinders allows for amplification of force through the application of hydraulic pressure. This high force output is advantageous in heavy equipment applications that require lifting and moving heavy loads or exerting significant pushing or pulling forces.
Customizable load capacity:
Telescopic cylinders offer load capacity customization. The modular nature of telescopic cylinders allows for the addition or removal of stages, which directly affects the cylinder’s load capacity. By adjusting the number of stages, the cylinder’s load capacity can be tailored to the specific requirements of the heavy equipment, ensuring optimal performance and safety.
Smooth operation:
Telescopic cylinders provide smooth and controlled operation. The hydraulic control system allows for precise control of the cylinder’s extension and retraction, ensuring smooth and synchronized movement of multiple stages. This smooth operation is important in heavy equipment applications where precise positioning, lifting, or pushing is required to avoid damage to the equipment or the load.
Durability and reliability:
Telescopic cylinders are built to withstand heavy-duty usage in demanding environments. They are designed using robust materials and undergo rigorous testing to ensure durability and reliability. The cylinders can withstand high load capacities, harsh operating conditions, and repetitive cycles, making them well-suited for heavy equipment applications that involve continuous and demanding operations.
Overall, telescopic cylinders offer advantages such as compact design, extended reach, high force output, customizable load capacity, smooth operation, durability, and reliability. These advantages contribute to improved efficiency, productivity, and performance of heavy equipment in various industries.
It’s important to consult the manufacturer’s specifications and guidelines to ensure the appropriate selection and application of telescopic cylinders in heavy equipment.
How do telescopic cylinders handle variations in cylinder size and capacity?
Telescopic cylinders are designed to handle variations in cylinder size and capacity effectively. Here’s a detailed explanation:
Modular design:
Telescopic cylinders feature a modular design that allows for flexibility in cylinder size and capacity. They consist of multiple stages or sections that retract inside one another, similar to a telescope. The number of stages can vary depending on the desired extended length and capacity of the cylinder. This modular design enables telescopic cylinders to be customized according to specific requirements.
Variable stroke length:
Telescopic cylinders offer the advantage of variable stroke length. The stroke length refers to the distance the cylinder can extend and retract. By adjusting the stroke length, the effective size and capacity of the telescopic cylinder can be modified. This flexibility allows for accommodating variations in the size and capacity requirements of different applications.
Increased capacity with additional stages:
Telescopic cylinders can handle variations in capacity by adding more stages to the cylinder. Each stage contributes to the overall capacity of the cylinder. By including additional stages, the cylinder’s capacity can be increased to handle higher loads or operate in more demanding conditions. This scalability makes telescopic cylinders suitable for a wide range of applications with varying capacity needs.
Proportional force distribution:
Telescopic cylinders distribute the applied force proportionally across the stages. As the cylinder extends, each stage contributes to supporting the load and transmitting the force. The force distribution ensures that the load is evenly distributed among the stages, allowing the cylinder to handle variations in capacity effectively.
Hydraulic control system:
Telescopic cylinders rely on a hydraulic control system for operation. The system allows for precise control over the extension and retraction of each stage. By adjusting the hydraulic pressure and flow, operators can regulate the movement and force exerted by the cylinder, ensuring optimal performance and capacity utilization.
Overall, telescopic cylinders handle variations in cylinder size and capacity through their modular design, variable stroke length, ability to add stages for increased capacity, proportional force distribution, and hydraulic control system. These features make telescopic cylinders adaptable to different applications and enable them to effectively handle varying size and capacity requirements.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the size, capacity, and operational considerations of telescopic cylinders.
What are the components and design features of a telescopic cylinder?
A telescopic cylinder consists of various components and incorporates specific design features to enable its functionality and performance. Here’s a detailed explanation:
Components of a telescopic cylinder:
- Stages or Sleeves: A telescopic cylinder comprises multiple stages or sleeves that are nested inside one another. These stages are usually cylindrical in shape and are made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application requirements.
- Piston and Rod: Each stage of a telescopic cylinder has its own piston and rod assembly. The piston is located inside the stage and is connected to the rod, which extends through the center of the stage. The piston and rod assembly is responsible for generating the linear motion of each stage during extension and retraction.
- Seals: Sealing elements, such as O-rings or lip seals, are used to ensure a hydraulic seal between the stages. These seals prevent leakage of hydraulic fluid and maintain pressure within each stage during operation. The seals also help to protect the internal components from contaminants.
- Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
- Guides and Bearings: To maintain proper alignment and minimize friction between the stages, telescopic cylinders may include guides and bearings. These components facilitate smooth extension and retraction of the stages and provide structural support.
- Hydraulic Connections: Telescopic cylinders have hydraulic connections to supply hydraulic fluid for extension and retraction. These connections typically include ports or fittings for the inlet and outlet of hydraulic fluid. Flexible hydraulic hoses or tubing are used to connect the cylinder to the hydraulic system of the equipment.
Design features of a telescopic cylinder:
- Nested Structure: The nested structure is a fundamental design feature of a telescopic cylinder. It allows the stages to extend and retract within one another, enabling a longer stroke length while maintaining a compact retracted length.
- Articulation Capability: Some telescopic cylinders incorporate articulation capability, which allows the cylinder to adjust its angle or position relative to the equipment. This feature enhances the versatility of the cylinder and enables it to adapt to different mounting orientations and working conditions.
- Internal Flow Paths: The design of a telescopic cylinder includes internal flow paths that facilitate the controlled flow of hydraulic fluid between the stages during extension and retraction. These flow paths ensure synchronized movement of the stages and contribute to the overall performance and stability of the cylinder.
- Surface Treatment: The external surfaces of telescopic cylinders are often treated or coated to provide protection against corrosion, wear, and environmental elements. Common surface treatments include painting, powder coating, or electroplating.
These components and design features work together to enable the functionality, reliability, and performance of a telescopic cylinder. It’s important to consult the manufacturer’s guidelines and specifications for proper installation, operation, and maintenance of the telescopic cylinder based on the specific application requirements.
editor by CX 2024-04-03
China Best Sales Csdls Hydraulic Engineering Accessory Piston Type Master Oil Cylinder for CZPT CZPT Putzmeister Schwing vacuum pump design
Product Description
Cylinder Type: | Mill type, head bolted, base welded |
Structure: | Piston type |
Standard: | GB/T15622-1995 JB/T15715-2000 |
Bore diameter: | Up to 700mm |
Rod diameter: | Up to 500mm |
Stroke length: | Up to 10,000mm |
Piston rod material: | 20#,45#,40Cr, 27SiMn,30CrMo,35CrMo,42CrMo |
Rod surface treatment: | Hard chrome plated, chrome/nickel plated, ceramic coated |
Tube material: | 20#, 25#, 45#, 27SiMn,30CrMo,35CrMo,42CrMo |
Tube surface painting: | Colors as RAL, thickness according to request |
Mounting type: | Clevis, cross tube, flange, trunnion, tang, thread |
Design pressure: | Up to 40Mpa |
Seal kits type: | PARKER, MERKEL, HALLITE, NOK, TRELLEBORG |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001 |
---|---|
Pressure: | with or Without High and Low Pressure Switch |
Work Temperature: | Normal or Lower Temperature with Matched Sealing |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Switching or Regulated Type |
Samples: |
US$ 1140/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can hydraulic cylinders be used for precise operations like CNC machining or molding?
Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:
1. Force and Control:
– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.
2. Adjustable Speed and Positioning:
– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.
3. Integrated Feedback Systems:
– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.
4. Damping and Vibration Control:
– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.
5. Customization and Adaptability:
– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.
6. Energy Efficiency:
– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.
7. Maintenance and Calibration:
– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.
In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
How do hydraulic cylinders handle variations in load, pressure, and speed?
Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here’s a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:
Variations in Load:
– Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.
Variations in Pressure:
– Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.
Variations in Speed:
– Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder’s extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder’s movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder’s movement.
Load-Sensing Technology:
– Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.
Accumulators:
– Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.
In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.
editor by CX 2024-04-02
China Professional Professional CZPT Factory Hydraulic Hoist Cylinder for Dump Truck vacuum pump and compressor
Product Description
Model |
Max storke |
Rated Pressure |
L |
M1 |
4TG-E130*3800EE |
3800 |
16 |
1325 |
M27*2 |
4TG-E150*3800EE |
3800 |
16 |
1325 |
M27*2 |
3TG-E240*6600EE |
6600 |
16 |
2058 |
G1 |
Installment Introduction
1.The specifications for all the install screw and self- locking is M16(DIN931.Q8.8)
2.The specifications for grommet is M1730MM.
3.The biggest gap between support and cylinder is 2mm.
4.Make sure the hydraulic cylinder vertically ,up and down 2 parallel shafts when installed.
5.The installation should be greater than the center distance between the closed hydraulic cylinder center distance 20mm-30mm.
Six advantages for hydraulic
More secure
Faster unloding speed.
The lifting frequency higher
A stronger ability to adapt to the environment
Lighter
Lift more
Our Advantages
* OEM and ODM service are provided
* Protection of your sales area, ideas of design and all your private information
* Tested 1 by 1 before delivery to ensure 100% working perfect
* Merkel from Germany Seal kits for Cylinder to ensure safety in transportation
* In stock for fast delivery, best after-sales service
best selling merker oil seal cylinder multistage cylinder nok oil seal cylinder
1.Are you a trading company or manufacture?
-Manufacture of 14 years experience,welcome to our factory to see our product.
2.What’s the best delivery time?
-Usually 20 days.(We have many part in stock and expediting service is available.)
3.Is your price the lowest?
-No.We offer top quality and services at reasonable price.
4.Why will buy from you?
-Never tires never gains.We provide not only competitive products of high quality.
5.How about your after sales service?
-If have any problem,you can contact us and we will leading you to slove any questions.
Products Description
Model |
Max storke |
Rated Pressure |
L |
M1 |
4TG-E130*3800EE |
3800 |
16 |
1325 |
M27*2 |
4TG-E150*3800EE |
3800 |
16 |
1325 |
M27*2 |
3TG-E240*6600EE |
6600 |
16 |
2058 |
G1 |
Installment Introduction
1.The specifications for all the install screw and self- locking is M16(DIN931.Q8.8)
2.The specifications for grommet is M1730MM.
3.The biggest gap between support and cylinder is 2mm.
4.Make sure the hydraulic cylinder vertically ,up and down 2 parallel shafts when installed.
5.The installation should be greater than the center distance between the closed hydraulic cylinder center distance 20mm-30mm.
Six advantages for hydraulic
More secure
Faster unloding speed.
The lifting frequency higher
A stronger ability to adapt to the environment
Lighter
Lift more
* OEM and ODM service are provided
* Protection of your sales area, ideas of design and all your private information
* Tested 1 by 1 before delivery to ensure 100% working perfect
* Merkel from Germany Seal kits for Cylinder to ensure safety in transportation
* In stock for fast delivery, best after-sales service
FAQ
best selling merker oil seal cylinder multistage cylinder nok oil seal cylinder
1.Are you a trading company or manufacture?
-Manufacture of 14 years experience,welcome to our factory to see our product.
2.What’s the best delivery time?
-Usually 20 days.(We have many part in stock and expediting service is available.)
3.Is your price the lowest?
-No.We offer top quality and services at reasonable price.
4.Why will buy from you?
-Never tires never gains.We provide not only competitive products of high quality.
5.How about your after sales service?
-If have any problem,you can contact us and we will leading you to slove any questions.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Structure: | Piston Cylinder |
---|---|
Material: | High Strength Alloy Plate |
Condition: | New |
Standard or Nonstandard: | Standard |
Warranty: | 5 Years |
Maximum Stroke: | According to Your Requests |
Customization: |
Available
|
|
---|
What role do hydraulic cylinders play in optimizing power distribution and efficiency?
Hydraulic cylinders play a significant role in optimizing power distribution and efficiency in various applications. They are widely used in industries such as construction, manufacturing, agriculture, and transportation, where efficient power transmission and precise control are essential. Here’s a detailed explanation of the role hydraulic cylinders play in optimizing power distribution and efficiency:
1. Power Transmission:
– Hydraulic cylinders serve as a means of power transmission in hydraulic systems. They convert the hydraulic fluid’s pressure and flow into linear mechanical force, allowing for controlled movement of loads. Hydraulic cylinders efficiently transmit power from an energy source, such as a hydraulic pump, to the working components of the system. The ability to transmit power over long distances with minimal energy losses makes hydraulic cylinders an efficient choice for various applications.
2. High Power Density:
– Hydraulic cylinders offer high power density, meaning they can generate significant force relative to their size. This characteristic enables compact and lightweight hydraulic systems while delivering substantial power output. Hydraulic cylinders can produce high forces even at low operating speeds, making them suitable for heavy-duty applications. The high power density of hydraulic cylinders contributes to the optimization of power distribution by maximizing the force output while minimizing the system’s overall size and weight.
3. Load Handling and Control:
– Hydraulic cylinders provide precise load handling and control capabilities, contributing to power distribution optimization. By adjusting the flow of hydraulic fluid to the cylinder, operators can control the speed, force, and direction of the cylinder’s movement. This level of control allows for accurate positioning and smooth operation of loads, reducing energy waste and improving overall system efficiency. Hydraulic cylinders enable precise load handling and control, leading to optimal power distribution and improved energy efficiency.
4. Variable Force and Speed:
– Hydraulic cylinders offer the advantage of variable force and speed control. By regulating the flow of hydraulic fluid, the force exerted by the cylinder can be adjusted as needed. This flexibility enables hydraulic systems to adapt to different load requirements, optimizing power distribution. Hydraulic cylinders can operate at varying speeds, allowing for efficient power distribution across different stages of an operation. The ability to vary force and speed according to the application’s demands enhances energy efficiency and overall system performance.
5. Energy Recovery:
– Hydraulic cylinders can contribute to energy efficiency through energy recovery mechanisms. In certain applications, hydraulic systems utilize accumulators to store and release energy. Hydraulic cylinders can store energy during deceleration or when the load is lowering, and then release it to assist in subsequent movements. This energy recovery process reduces the overall energy consumption of the system, optimizing power distribution and improving efficiency. The ability to recover and reuse energy enhances the sustainability and cost-effectiveness of hydraulic systems.
6. Integrated Control Systems:
– Hydraulic cylinders can be integrated into advanced control systems, such as servo control or proportional control systems. These systems utilize electronic feedback, sensors, and control algorithms to optimize power distribution and efficiency. By continuously monitoring and adjusting the flow of hydraulic fluid, the control systems ensure that the cylinder operates at the most efficient operating point, minimizing energy losses and maximizing power distribution. Integrated control systems enhance the overall energy efficiency of hydraulic systems and contribute to power optimization.
7. System Efficiency Improvement:
– Hydraulic cylinders, when combined with other components in a hydraulic system, contribute to overall system efficiency improvement. The integration of efficient hydraulic pumps, valves, and actuators helps minimize energy losses, pressure drops, and heat generation. By optimizing the design and configuration of the hydraulic system, including the selection of appropriate cylinder sizes, operating pressures, and control strategies, power distribution can be optimized, leading to improved energy efficiency. Proper system design and component selection are critical for achieving optimal power distribution and efficiency.
In summary, hydraulic cylinders play a crucial role in optimizing power distribution and efficiency in various applications. They enable efficient power transmission, offer high power density, provide precise load handling and control, allow for variable force and speed control, facilitate energy recovery, can be integrated into advanced control systems, and contribute to overall system efficiency improvement. By leveraging the capabilities of hydraulic cylinders, industries can achieve better power utilization, reduced energy consumption, and improved system performance.
How do hydraulic cylinders contribute to the efficiency of agricultural tasks like plowing?
Hydraulic cylinders play a crucial role in improving the efficiency of agricultural tasks, including plowing. These cylinders provide several benefits that enhance the performance and productivity of agricultural machinery. Let’s explore how hydraulic cylinders contribute to the efficiency of plowing and other agricultural tasks:
- Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, which is essential for tasks like plowing. The hydraulic system supplies pressurized fluid to the cylinders, converting hydraulic energy into mechanical force. This force is then utilized to drive plow blades through the soil, overcoming resistance and facilitating efficient soil penetration. The power generated by hydraulic cylinders ensures effective plowing, even in tough or compacted soil conditions.
- Adjustable Working Depth: Hydraulic cylinders allow for easy and precise adjustment of the plow’s working depth. By controlling the extension or retraction of the hydraulic cylinder, farmers can adjust the depth of the plow blades according to soil conditions, crop requirements, or their specific preferences. This adjustability enhances efficiency by ensuring optimal soil tillage and minimizing unnecessary energy expenditure. Farmers can adapt the plowing depth to different field areas, optimizing the use of resources and promoting uniform crop growth.
- Responsive Control: Hydraulic systems offer highly responsive control, enabling farmers to make quick adjustments during plowing operations. Hydraulic cylinders respond rapidly to changes in hydraulic pressure and valve settings, allowing for immediate modifications in the plow’s position, depth, or angle. This responsiveness enhances efficiency by facilitating on-the-go adjustments based on soil variations, obstacles, or changing field conditions. Farmers can maintain precise control over the plow’s performance, ensuring effective soil tillage and minimizing the risk of crop damage.
- Implement Versatility: Hydraulic cylinders enable the attachment of various implements to agricultural machinery, expanding their functionality and versatility. In the context of plowing, hydraulic cylinders allow for the attachment and detachment of plow blades or other tillage implements. This versatility enables farmers to adapt their equipment to different soil types, field sizes, or specific plowing requirements. By using hydraulic cylinders, farmers can easily switch between different implements, optimizing their equipment for specific tasks and maximizing efficiency.
- Efficient Time Management: Hydraulic cylinders contribute to time efficiency in agricultural tasks like plowing. With hydraulic systems, farmers can operate plows at higher speeds while maintaining control and precision. The responsive nature of hydraulic cylinders allows for efficient turning, maneuvering, and repositioning of plows, minimizing downtime and optimizing field coverage. This time efficiency translates into increased productivity and reduced overall operational costs. Farmers can accomplish plowing tasks more quickly, allowing them to cover larger field areas in less time.
In summary, hydraulic cylinders significantly contribute to the efficiency of agricultural tasks like plowing. Through powerful force generation, adjustable working depth, responsive control, implement versatility, and efficient time management, hydraulic systems equipped with cylinders enhance the performance and productivity of agricultural machinery. These contributions allow farmers to accomplish plowing tasks more effectively, optimize field operations, and achieve improved overall efficiency in their agricultural practices.
How do hydraulic cylinders contribute to the efficiency of heavy machinery like excavators?
Hydraulic cylinders play a crucial role in enhancing the efficiency and performance of heavy machinery, such as excavators. These powerful hydraulic actuators enable excavators to perform various tasks efficiently and effectively. Here’s a detailed explanation of how hydraulic cylinders contribute to the efficiency of heavy machinery like excavators:
1. Force and Power:
– Hydraulic cylinders provide the necessary force and power required for the excavation process. They convert hydraulic energy from the hydraulic fluid into linear mechanical force, allowing the excavator to exert significant pushing and pulling forces. The force generated by hydraulic cylinders enables the digging arm or boom of the excavator to penetrate and break through tough materials, such as soil, rocks, or concrete, with ease and efficiency.
2. Precise Control:
– Hydraulic cylinders offer precise control over the movement of excavator components. By regulating the flow of hydraulic fluid to the cylinders, operators can control the speed, direction, and positioning of the excavator’s arm, boom, bucket, and other attachments. This precise control allows operators to perform delicate operations, such as fine grading or precise material placement, with accuracy and efficiency.
3. Versatility and Adaptability:
– Hydraulic cylinders enable excavators to perform a wide range of tasks by facilitating the quick and easy interchangeability of attachments. Excavators can be equipped with various specialized attachments, including buckets, breakers, grapples, and augers, which can be efficiently connected and disconnected using hydraulic cylinders. This versatility and adaptability enhance the efficiency of excavators by enabling them to tackle different tasks without the need for extensive manual adjustments or downtime.
4. Increased Productivity:
– The power and control provided by hydraulic cylinders significantly increase the productivity of excavators. Excavators equipped with hydraulic cylinders can complete tasks more quickly and efficiently compared to manual or mechanically-driven machinery. The precise control over movements allows for faster cycle times, reduced idle time, and improved overall productivity on the worksite.
5. Enhanced Digging and Lifting Capabilities:
– Hydraulic cylinders enable excavators to perform digging and lifting operations with enhanced capabilities. The force generated by hydraulic cylinders allows excavators to dig deeper and lift heavier loads compared to other types of machinery. This increased digging and lifting capacity contributes to the efficiency of excavators by reducing the number of passes required to complete a task and improving overall productivity.
6. Durability and Reliability:
– Hydraulic cylinders are designed to withstand heavy loads, challenging operating conditions, and frequent use. They are built with robust materials, such as high-strength steel, and undergo stringent quality control measures during manufacturing. The durability and reliability of hydraulic cylinders ensure that excavators can operate efficiently even in demanding environments, minimizing downtime and maximizing productivity.
7. Energy Efficiency:
– Hydraulic systems, including hydraulic cylinders, are known for their energy efficiency. Hydraulic cylinders can deliver high force outputs while consuming relatively low amounts of hydraulic fluid. This energy efficiency translates to lower fuel consumption and reduced operating costs for excavators. The efficient use of hydraulic power contributes to the overall efficiency and sustainability of heavy machinery operations.
8. Safety:
– Hydraulic cylinders play a vital role in ensuring the safety of excavator operations. They provide controlled and predictable movements, reducing the risk of sudden or uncontrolled motions. The precise control offered by hydraulic cylinders allows operators to perform tasks safely and accurately, minimizing the chances of accidents or damage to the machinery or surrounding environment.
Overall, hydraulic cylinders are essential components that significantly contribute to the efficiency of heavy machinery like excavators. By providing force, precise control, versatility, increased productivity, enhanced capabilities, durability, energy efficiency, and safety, hydraulic cylinders enable excavators to perform a wide range of tasks efficiently and effectively in various industries, including construction, mining, and landscaping.
editor by CX 2024-04-02
China Custom The Factory Customizes a Variety of Double-Acting Telescopic Hydraulic Cylinders for Vehicles Such as Tractors vacuum pump oil near me
Product Description
Products Description
Product Name |
HSG Series Hydraulic Cylinder |
|||
Work Press |
7/14/16/21/31.5MPa 37.5/63MPa Can be Customized |
|||
Material |
Aluminum,Cast Iron,45mnb Steel,Stainless Steel |
|||
Bore Size |
40mm–320mm,Customizable |
|||
Shaft Diameter |
20mm–220mm,Customizable |
|||
Stroke Length |
30mm–14100mm,Customizable |
|||
Rod Surface Hardness |
HRC48-54 |
|||
Paint Color |
Black,Yellow,Blue,Brown,Customizable |
|||
Mounting |
Earring,Flange,Clevis.Foot,Trunnion,Customizable |
|||
Warrenty |
1 Year |
|||
MOQ |
1 Piece |
|||
Delivery Time |
7-15 Days,Also depands on specific demands |
|||
Certification |
ISO9001,CE |
Company Profile
QIANGLIN HYDRAULIC MACHINERY CO., LTD
QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner. |
FAQ:
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always our goal. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can telescopic cylinders be used in material handling equipment for reach and lift?
Yes, telescopic cylinders are commonly used in material handling equipment to provide reach and lift capabilities. Here’s a detailed explanation:
Role in material handling:
Telescopic cylinders play a crucial role in material handling equipment by extending the reach and enabling the lifting of heavy loads. These cylinders are typically employed in equipment such as forklifts, telehandlers, reach stackers, and aerial work platforms.
Reach extension:
Telescopic cylinders allow material handling equipment to extend their reach by extending the boom or lifting arm. The nested design of the cylinder, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access materials at greater heights or reach into confined spaces.
Lifting capacity:
Telescopic cylinders provide the necessary lifting force to handle heavy loads in material handling equipment. The cylinder’s bore size, rod diameter, and overall construction are engineered to withstand the forces exerted during lifting and ensure safe and efficient load handling.
Precision control:
Telescopic cylinders offer precise control over the extension and retraction of the lifting arm or boom. The hydraulic control system regulates the flow of hydraulic fluid to each stage of the cylinder, allowing for smooth and controlled movement. This precise control is essential in material handling applications to ensure accurate positioning of loads and safe operation.
Compactness and flexibility:
Telescopic cylinders contribute to the compactness and flexibility of material handling equipment. By retracting the cylinder stages, the overall length of the equipment can be minimized, making it easier to maneuver in tight spaces. Additionally, the ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Variety of material handling equipment:
Telescopic cylinders are utilized in a wide range of material handling equipment to enhance reach and lift capabilities. Forklifts, for example, often incorporate telescopic cylinders to extend the forks and reach into pallet racks. Telehandlers and reach stackers utilize telescopic cylinders to extend the lifting arm and reach high stacking heights. Aerial work platforms utilize telescopic cylinders to extend the platform and provide elevated access for maintenance or construction tasks.
Advantages of telescopic cylinders in material handling:
Telescopic cylinders offer several advantages in material handling equipment:
- Increased reach: Telescopic cylinders allow operators to extend the equipment’s reach, enabling access to materials at greater heights or in confined spaces.
- Enhanced lifting capacity: Telescopic cylinders provide the necessary lifting force to handle heavy loads, expanding the equipment’s lifting capabilities.
- Precision and control: The hydraulic control system of telescopic cylinders allows for precise and controlled movement, ensuring accurate load positioning and safe operation.
- Compactness and flexibility: By retracting the cylinder stages, material handling equipment can be more compact and maneuverable, adapting to different working environments.
Overall, telescopic cylinders are widely used in material handling equipment to extend reach and enhance lifting capabilities. Their precise control, compactness, and flexibility make them essential components in various material handling applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, maintenance requirements, and safety considerations.
How do telescopic cylinders contribute to precise reach and manipulation?
Telescopic cylinders play a crucial role in enabling precise reach and manipulation in various applications. Here’s a detailed explanation:
Extended reach:
Telescopic cylinders allow for extended reach in equipment such as cranes, excavators, booms, and material handling machinery. The nested design of telescopic cylinders, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access objects or work areas that are located at a distance.
Precise positioning:
Telescopic cylinders provide precise positioning capabilities, allowing operators to manipulate objects with accuracy. The hydraulic control system regulates the extension and retraction of each stage of the cylinder, enabling smooth and controlled movement. This precise control is essential in applications that require accurate placement or manipulation of objects, such as in construction, manufacturing, or material handling.
Load handling:
Telescopic cylinders contribute to precise load handling by providing the necessary force and control. The cylinders are designed to handle heavy loads and can exert the required power to lift, lower, or manipulate objects with precision. The hydraulic control system allows operators to adjust the speed and movement of the telescopic cylinder, ensuring safe and controlled load handling.
Adaptability:
Telescopic cylinders offer adaptability in reaching and manipulating objects in various environments. Their nested design allows for compact retraction, making them suitable for applications with limited space. The ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Support for attachments:
Telescopic cylinders often support attachments or tools that enhance reach and manipulation capabilities. For example, in excavators, telescopic cylinders are used to extend the boom or arm, while additional attachments such as buckets or grabs facilitate precise material handling or excavation tasks.
Overall, telescopic cylinders contribute to precise reach and manipulation by offering extended reach, precise positioning, load handling capabilities, adaptability, and support for attachments. Their hydraulic control system and nested design enable operators to achieve accurate and controlled movements, enhancing productivity and efficiency in various applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, operating parameters, and recommended maintenance practices to ensure optimal performance and safety.
What is a telescopic cylinder and how does it work?
A telescopic cylinder is a type of hydraulic cylinder that consists of multiple nested stages or sections that can extend and retract, similar to a telescope. Here’s a detailed explanation:
A telescopic cylinder is primarily used when a long stroke length is required while maintaining a compact retracted length. It is commonly used in applications such as dump trucks, cranes, aerial platforms, and other equipment that require extended reach or height adjustment. Here’s how a telescopic cylinder works:
- Structure: A telescopic cylinder consists of a series of cylindrical stages or sleeves that are progressively nested inside one another. These stages are typically made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application.
- Extension and Retraction: When the telescopic cylinder is in the retracted position, the stages are nested inside one another, with the smallest stage located at the base. To extend the cylinder, hydraulic fluid is supplied to the base of the cylinder, creating pressure that pushes the smallest stage outwards. As the smallest stage extends, it exposes the next larger stage, which is then pushed out by the hydraulic pressure. This process continues until all the stages have extended, resulting in a longer overall stroke length.
- Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
- Retraction: To retract the telescopic cylinder, hydraulic fluid is supplied to the opposite side of the cylinder, typically to the largest stage. The hydraulic pressure acts on the largest stage, retracting it first. As each stage retracts, it nests inside the next smaller stage until the cylinder is fully retracted to its original compact length.
- Control and Stability: The extension and retraction of a telescopic cylinder are controlled by a hydraulic system. By regulating the flow and pressure of the hydraulic fluid, operators can precisely control the extension and retraction speed of the cylinder. The nested design of the stages provides stability and load-bearing capacity, allowing the telescopic cylinder to handle substantial loads.
The use of telescopic cylinders offers several benefits:
- Extended Stroke Length: Telescopic cylinders provide a significantly longer stroke length compared to traditional single-stage cylinders, enabling extended reach or height adjustment without increasing the overall size of the cylinder.
- Compact Design: The nested structure of telescopic cylinders allows for a compact retracted length, making them suitable for applications with space constraints.
- Versatility: Telescopic cylinders can be customized to meet specific stroke length requirements. The number of stages can be adjusted, and the cylinders can be designed for different load capacities and working conditions.
- Efficient Operation: The controlled extension and retraction of telescopic cylinders enable precise load handling and positioning, improving operational efficiency.
Overall, a telescopic cylinder is a hydraulic cylinder with nested stages that can extend and retract, providing an extended stroke length while maintaining a compact retracted length. Its structure and operation make it ideal for applications requiring long reach or height adjustment.
It’s important to follow the manufacturer’s guidelines and specifications for the telescopic cylinder, including proper maintenance and inspection, to ensure its safe and reliable operation.
editor by CX 2024-04-02
China Standard OEM Hydraulic Cylinder for 7 Ton Shovel Loaders High Quality Hot Sale Compact Mini Wheel Loader vacuum pump ac system
Product Description
Product Description
HangZhou CHINAMFG manufacturing capabilities are a vital component of our business and at the heart of what we do. Our in-house engineering team, manufacturing and quality systems were designed to ensure that we build only the best for our customers; guaranteeing the most appropriate design features and quality product materials for your application. We can also incorporate load holding valves, linear position transducers and a wide range of mounting options. Custom paint and packaging options are also available. 3D CAD models are available CHINAMFG request.
Wide variety of custom cylinders are manufactured, including CHINAMFG cylinders (both single and double acting), single and double acting telescopic (small and large bore), double end cylinders, piggyback design, mill type cylinders, tie rod cylinders, accumulators, marine grade steering cylinders, and standard dimension welded product lines.
Product Parameters
Max | Min | |
HydroCylinder bore: | 280 mm | 10 mm |
Piston Rod Diameter: | 280 mm | 10 mm |
Retract Length: | 3500 mm | 50 mm |
Stretch Length(Single stage cylinder): | 6500 mm | 60 mm |
Stretch Length(Dual stage cylinder): | 12500 mm | 60 mm |
Working Pressure: | 4500PSI | 1000PSI |
Detailed Photos
Mounting
Factory and Equipments
Packaging & Shipping
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can hydraulic cylinders be integrated with modern telematics and remote monitoring?
Yes, hydraulic cylinders can indeed be integrated with modern telematics and remote monitoring systems. The integration of hydraulic cylinders with telematics and remote monitoring technology offers numerous benefits, including enhanced operational efficiency, improved maintenance practices, and increased overall productivity. Here’s a detailed explanation of how hydraulic cylinders can be integrated with modern telematics and remote monitoring:
1. Sensor Integration:
– Hydraulic cylinders can be equipped with various sensors to gather real-time data about their performance and operating conditions. Sensors such as pressure transducers, temperature sensors, position sensors, and load sensors can be integrated directly into the cylinder or its associated components. These sensors provide valuable information about parameters such as pressure, temperature, position, and load, enabling remote monitoring and analysis of the cylinder’s behavior.
2. Data Transmission:
– The data collected from the sensors in hydraulic cylinders can be transmitted wirelessly or through wired connections to a central monitoring system. Wireless communication technologies such as Bluetooth, Wi-Fi, or cellular networks can be employed to transmit data in real-time. Alternatively, wired connections such as Ethernet or CAN bus can be utilized for data transmission. The choice of communication method depends on the specific requirements of the application and the available infrastructure.
3. Remote Monitoring Systems:
– Remote monitoring systems receive and process the data transmitted from hydraulic cylinders. These systems can be cloud-based or hosted on local servers, depending on the implementation. Remote monitoring systems collect and analyze the data to provide insights into the cylinder’s performance, health, and usage patterns. Operators and maintenance personnel can access the monitoring system through web-based interfaces or dedicated software applications to view real-time data, receive alerts, and generate reports.
4. Condition Monitoring and Predictive Maintenance:
– Integration with telematics and remote monitoring enables condition monitoring and predictive maintenance of hydraulic cylinders. By analyzing the collected data, patterns and trends can be identified, allowing for the detection of potential issues or anomalies before they escalate into major problems. Predictive maintenance algorithms can be applied to the data to generate maintenance schedules, recommend component replacements, and optimize maintenance activities. This proactive approach helps prevent unexpected downtime, reduces maintenance costs, and maximizes the lifespan of hydraulic cylinders.
5. Performance Optimization:
– The data collected from hydraulic cylinders can also be utilized to optimize their performance. By analyzing parameters such as pressure, temperature, and load, operators can identify opportunities for improving operational efficiency. Insights gained from the remote monitoring system can guide adjustments in system settings, load management, or operational practices to optimize the performance of hydraulic cylinders and the overall hydraulic system. This optimization can result in energy savings, improved productivity, and reduced wear and tear.
6. Integration with Equipment Management Systems:
– Telematics and remote monitoring systems can be integrated with broader equipment management systems. This integration allows hydraulic cylinder data to be correlated with data from other components or related machinery, providing a comprehensive view of the overall system’s performance. This holistic approach enables operators to identify potential interdependencies, optimize system-wide performance, and make informed decisions regarding maintenance, repairs, or upgrades.
7. Enhanced Safety and Fault Diagnosis:
– Telematics and remote monitoring can contribute to enhanced safety and fault diagnosis in hydraulic systems. Real-time data from hydraulic cylinders can be used to detect abnormal conditions, such as excessive pressure or temperature, which may indicate potential safety risks. Fault diagnosis algorithms can analyze the data to identify specific issues or malfunctions, enabling prompt intervention and reducing the risk of catastrophic failures or accidents.
In summary, hydraulic cylinders can be effectively integrated with modern telematics and remote monitoring systems. This integration enables the collection of real-time data, remote monitoring of performance, condition monitoring, predictive maintenance, performance optimization, integration with equipment management systems, and enhanced safety. By harnessing the power of telematics and remote monitoring, hydraulic cylinder users can achieve improved efficiency, reduced downtime, optimized maintenance practices, and enhanced overall productivity in various applications and industries.
Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders
Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:
- Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
- Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
- Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
- Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
- Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.
In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.
Which industries and machinery commonly use hydraulic cylinders for power transmission?
Hydraulic cylinders are widely used in various industries and machinery for power transmission due to their ability to generate high force, precise control, and reliable operation. They play a crucial role in converting hydraulic energy into mechanical force and motion. Here are the detailed industries and machinery that commonly utilize hydraulic cylinders for power transmission:
1. Construction and Heavy Equipment:
– Hydraulic cylinders are extensively used in the construction industry for tasks involving heavy lifting, pushing, and positioning. They are employed in cranes, excavators, loaders, bulldozers, and other heavy equipment to lift and move heavy loads, operate attachments, and manipulate construction materials. Hydraulic cylinders provide the necessary force and control for tasks such as lifting and lowering buckets, extending and retracting booms, and tilting blades.
2. Material Handling and Logistics:
– In material handling and logistics applications, hydraulic cylinders are vital components for the movement and manipulation of goods. They are used in forklifts, stackers, palletizers, and conveyor systems to lift, lower, and position loads with precision. Hydraulic cylinders enable the efficient transfer of heavy objects, facilitate stacking and sorting operations, and contribute to the smooth operation of material handling equipment.
3. Agriculture and Farming:
– The agricultural industry relies on hydraulic cylinders for various tasks in farming equipment. Tractors, harvesters, sprayers, and loaders utilize hydraulic cylinders to perform functions such as lifting and lowering implements, adjusting the position of attachments, and steering operations. Hydraulic cylinders enable efficient and precise control in tasks like plowing, tilling, harvesting, and baling, enhancing productivity and convenience in agricultural operations.
4. Mining and Extraction:
– Hydraulic cylinders are extensively utilized in the mining and extraction industry for their ability to handle heavy loads and operate in challenging environments. They are employed in mining equipment such as dump trucks, loaders, and excavators for tasks like ore extraction, rock breaking, and material transport. Hydraulic cylinders provide the force required for excavating, loading, and dumping operations, contributing to the efficiency and productivity of mining operations.
5. Manufacturing and Industrial Machinery:
– Hydraulic cylinders are an integral part of various manufacturing and industrial machinery. They are utilized in presses, stamping machines, injection molding machines, and metal forming equipment to apply force for shaping, bending, and pressing operations. Hydraulic cylinders enable precise control over the force and speed required for manufacturing processes, ensuring accurate and consistent results.
6. Automotive and Transportation:
– Hydraulic cylinders are employed in the automotive and transportation industry for a range of applications. They are used in vehicle lifting systems, such as car lifts and hydraulic jacks, for maintenance and repairs. Hydraulic cylinders are also utilized in bus doors, truck tailgates, and cargo handling systems to provide controlled movement and positioning. Additionally, hydraulic suspension systems in trucks, buses, and trailers use hydraulic cylinders for load leveling and stability.
7. Aerospace and Aviation:
– The aerospace and aviation industry relies on hydraulic cylinders for various applications, including aircraft landing gear, wing flaps, and flight control systems. Hydraulic cylinders provide the necessary force and precise control for extending and retracting landing gear, adjusting wing surfaces, and actuating control surfaces. They contribute to the safe and efficient operation of aircraft, ensuring reliable performance during takeoff, landing, and flight maneuvers.
8. Marine and Offshore:
– Hydraulic cylinders are utilized in marine and offshore equipment for a wide range of tasks. They are found in ship and boat steering systems, hatch covers, cranes, winches, and anchor handling equipment. Hydraulic cylinders enable precise control and powerful force transmission in maritime applications, supporting navigation, cargo handling, and offshore operations.
In summary, hydraulic cylinders are commonly used in industries such as construction, material handling, agriculture, mining, manufacturing, automotive, aerospace, marine, and more. They are integral components in machinery and equipment that require reliable power transmission, precise control, and the ability to handle heavy loads. The versatile nature of hydraulic cylinders allows them to be adapted to various applications, contributing to increased efficiency, productivity, and safety in numerous industries.
editor by CX 2024-03-30