Product Description
Model
Alpha series – Front end cylinder with double eye
FEE A149-4-571-243-K1225
Item no.: 7571184
Product introduce
The FEE pin-to-pin cylinder is the most common telescopic in North America. These range with first stage diameters from 4.3″ to 9″, with strokes up to 336″, and working pressures up to 3626 psi. The standard 2″ spherical bearing for the top eye helps against side loads, and hard chromed pistons keep the cylinders life extended.
Working temperature | -40°C ~ 80°C |
Max. duration of extension | 0.5 hour |
Color | RAL9005,Customize |
Material | CK45,ST52,ST52-3,27SiMn,Customize |
Seal kit | Trelleborg, Halite, Chesterton, NOK, Kayaba |
Piston rod | Hard chromed |
Packaging | Plywood case |
Warranty | 12 months |
Payment | T/T |
Specification
Max. Working pressure | 250bar |
Weight | 135kg |
Working volume | 40L |
Total volume | 43L |
Max. Cyl. Load (start tipping) | 245kN |
Extension | 1 | 2 | 3 | 4 |
Diameter | 149mm | 129mm | 110mm | 91mm |
stroke | 840mm | 860mm | 860mm | 860mm |
Company introduction
HangZhou CHINAMFG is a comprehensive manufacturing enterprise engaged in hydraulic cylinders, excavator attachment, metal casting, hydraulic components with certification approval to meet custom or OEM requirement.
CHINAMFG owned factory offers customer effective-cost product with quality assurance. With its professional and experienced R&D team, CHINAMFG Hydraulic devotes itself to research and develop to optimize products applied in construction, mining, waster management, forestry, agriculture, etc.
Hydraulic cylinders are the most effective and efficient method of pushing, pulling, lifting, and lowering.
Nowadays hydraulic cylinders play an essential role in daily application and industry:
√ Mining
√ Earthmoving & Construction
√ Agriculture &Forestry
√Waste Management & Material Handing
√Ship crane & offshore
Selecting the right cylinders for an application is critical in obtaining maximum performance and reliability.
CHINAMFG team takes all your concerns into consideration to suit your hydraulic cylinder requirements.
Together, we work out the best design solution for your application.
FAQ
Q1.Do you have MOQ?
Depending on different ideas, Can be negotiated. The larger the quantity is, the competitive the unit price will be.
Q2.Should the customer pay the delivery fee, How much is it?
For the delivery fee, many samples are being requested to be sent, so we must get the delivery fee.
If you tell me to use the appointed Express, you will give me your express account or you will pay according to the Express.
If you do not request, I will choose a cheap one in China.
Q3.How about the after sale service?
1) We will always keep the quality the same as the buyer’s samples and if there is something with the quality, we will make compensation for our customers.
2) We will suggest our packing and take charge in our packing, we will keep the goods safe in the delivery.
3) We will trace the goods from the production to selling, we will solve the problems in the selling for our customers.
Q4.When can I get a price?
We usually quote within 24 hours after we get your inquiry.
Q5: Are you a trade company or manufacturer?
We are a professional manufacturer with our own factory.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | Low Temperature |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do telescopic cylinders contribute to efficient and controlled extension and retraction?
Telescopic cylinders play a crucial role in enabling efficient and controlled extension and retraction. Here’s a detailed explanation:
Nested design:
The nested design of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for efficient extension and retraction. Each stage extends or retracts in a synchronized manner, contributing to smooth and controlled movement. The nested structure also enables compact storage when the cylinder is retracted, optimizing space utilization.
Hydraulic control system:
The hydraulic control system is a key component that enables efficient and controlled extension and retraction of telescopic cylinders. It utilizes hydraulic fluid and pressure to drive the cylinder’s movement. By regulating the flow of hydraulic fluid to each stage, the extension and retraction speed can be precisely controlled. This hydraulic control system ensures synchronized movement of the stages and allows for gradual and controlled extension and retraction.
Valve and cylinder design:
Telescopic cylinders incorporate specific valve and cylinder designs to facilitate efficient and controlled extension and retraction. Flow control valves, such as flow restrictors or throttle valves, are often used to regulate the flow rate of hydraulic fluid to each stage. These valves help manage the speed of extension and retraction, preventing sudden or uncontrolled movements. The cylinder design, including the bore size and rod diameter, is carefully engineered to optimize the balance between extension/retraction speed and force output.
Pressure relief and damping:
To further enhance controlled extension and retraction, telescopic cylinders may incorporate pressure relief and damping mechanisms. Pressure relief valves help prevent over-pressurization of the hydraulic system, ensuring that the cylinder operates within safe limits. Damping devices, such as hydraulic cushions or shock absorbers, can be integrated to dampen the impact or vibrations during extension and retraction, promoting smoother and more controlled movement.
Load-specific adjustments:
Telescopic cylinders can be adjusted to accommodate different load requirements, contributing to efficient and controlled extension and retraction. By adding or removing stages or adjusting the hydraulic pressure, operators can adapt the cylinder’s performance to match the specific load conditions. This customization ensures optimal extension and retraction characteristics for different applications and load capacities.
Overall, the nested design, hydraulic control system, valve and cylinder design, pressure relief mechanisms, and load-specific adjustments all work together to enable telescopic cylinders to contribute to efficient and controlled extension and retraction. These features ensure smooth operation, precise positioning, and safe handling of heavy loads in various industrial applications.
Consulting the manufacturer’s documentation and guidelines is important for understanding the specific capabilities and limitations of telescopic cylinders in terms of extension and retraction.
How do telescopic cylinders handle variations in hydraulic seal technology?
Telescopic cylinders are designed to accommodate variations in hydraulic seal technology. Here’s a detailed explanation:
Compatibility with different seal types:
Telescopic cylinders are engineered to be compatible with various types of hydraulic seals available in the market. Whether it’s a standard O-ring seal, lip seal, V-ring seal, or any other seal design, the cylinder’s construction takes into account the requirements of different seal technologies. This compatibility ensures that telescopic cylinders can effectively handle variations in hydraulic seal technology.
Seal retention and protection:
Telescopic cylinders incorporate features to retain and protect hydraulic seals. The cylinder design includes seal grooves, seal retainers, or other mechanisms that securely hold the seals in place, preventing their displacement or damage during operation. This seal retention and protection mechanism ensures the longevity and effectiveness of the seals, regardless of the specific seal technology used.
Seal lubrication and contamination prevention:
Telescopic cylinders address the lubrication and contamination concerns associated with different seal technologies. The cylinder’s hydraulic system is designed to provide proper lubrication to the seals, ensuring smooth movement and reducing friction. Additionally, measures such as seal scrapers or wipers are implemented to prevent the ingress of contaminants, such as dust, dirt, or moisture, which could compromise the performance of the seals. These lubrication and contamination prevention mechanisms cater to the specific requirements of various seal technologies.
Seal replacement and maintenance:
Telescopic cylinders are designed to facilitate seal replacement and maintenance procedures. The cylinder construction allows for easy access to the seals, simplifying the replacement process when necessary. This feature is advantageous when dealing with different seal technologies, as it enables swift and efficient maintenance, regardless of the specific seal design being used.
Adaptability to seal advancements:
Telescopic cylinder designs often incorporate adaptability to advancements in hydraulic seal technology. Manufacturers continuously develop new seal technologies to improve performance, durability, and efficiency. Telescopic cylinders are designed with flexibility to accommodate future advancements, ensuring compatibility with emerging seal technologies and allowing for upgrade possibilities without significant modifications to the cylinder itself.
Overall, telescopic cylinders are engineered to handle variations in hydraulic seal technology through compatibility with different seal types, seal retention and protection features, seal lubrication and contamination prevention mechanisms, ease of seal replacement and maintenance, and adaptability to seal advancements. These design considerations ensure that telescopic cylinders can effectively work with different seal technologies, providing reliable and efficient performance in hydraulic systems.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the recommended seal types and maintenance practices for telescopic cylinders.
How does a telescopic cylinder differ from standard hydraulic cylinders?
A telescopic cylinder differs from standard hydraulic cylinders in several ways. Here’s a detailed explanation:
A telescopic cylinder, also known as a multistage cylinder or a sleeve cylinder, is specifically designed to provide an extended stroke length while maintaining a compact retracted length. In contrast, a standard hydraulic cylinder typically consists of a single-stage rod and barrel design. Here are the key differences between a telescopic cylinder and a standard hydraulic cylinder:
- Design and Structure: The most significant difference lies in the design and structure. A standard hydraulic cylinder has a single-stage design, meaning it consists of a single rod and barrel. On the other hand, a telescopic cylinder features multiple stages or sleeves nested inside one another. This nested structure allows for a longer stroke length while keeping the retracted length compact.
- Stroke Length: The stroke length of a telescopic cylinder can be significantly longer compared to a standard hydraulic cylinder. The ability to extend in multiple stages allows for a greater overall stroke length, making telescopic cylinders suitable for applications that require extended reach or height adjustment.
- Retracted Length: While a standard hydraulic cylinder has a fixed retracted length equal to its stroke length, a telescopic cylinder offers a compact retracted length. The nested design enables the stages to retract inside one another, reducing the overall length of the cylinder when not in use. This compact retracted length is advantageous in applications with space constraints.
- Load Capacity: Telescopic cylinders are designed to handle substantial loads while maintaining stability. The nested structure provides increased load-bearing capacity compared to standard hydraulic cylinders. The stages distribute the load evenly, ensuring efficient load transfer throughout the extended stroke.
- Complexity and Maintenance: Telescopic cylinders are generally more complex in design compared to standard hydraulic cylinders. They require precise alignment of the stages and may include additional components such as locking mechanisms or guiding systems. This complexity can affect maintenance requirements and may require specialized inspection and servicing procedures.
- Application: Telescopic cylinders are commonly used in applications that require extended reach or height adjustment, such as cranes, dump trucks, aerial platforms, and material handling equipment. Standard hydraulic cylinders, on the other hand, are versatile and widely used in various applications, including industrial machinery, construction equipment, and agricultural machinery.
Despite these differences, both telescopic cylinders and standard hydraulic cylinders are essential components in hydraulic systems. They both rely on hydraulic fluid to generate force and provide linear motion. The selection of the cylinder type depends on the specific requirements of the application, including stroke length, retracted length, load capacity, and available space.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and maintenance of the hydraulic cylinder based on the specific application requirements.
editor by Dream 2024-05-07