Product Description
Product Description
Basic Information:
Double-acting Hydraulic Telescopic Hydraulic Cylinder In Good Price
Model | Max storke | Rated Pressure | L | M1 |
4TG-E130*3800EE |
3800 | 16 | 1325 | M27*2 |
4TG-E150*3800EE | 3800 | 16 | 1325 | M27*2 |
3TG-E240*6600EE | 6600 | 16 | 2058 | G1 |
Installment Introduction
1.The specifications for all the install screw and self- locking is M16(DIN931.Q8.8)
2.The specifications for grommet is M1730MM.
3.The biggest gap between support and cylinder is 2mm.
4.Make sure the hydraulic cylinder vertically ,up and down two parallel shafts when installed.
5.The installation should be greater than the center distance between the closed hydraulic cylinder center distance 20mm-30mm. |
|
Six advantages for hydraulic
More secure
Faster unloding speed.
The lifting frequency higher
A stronger ability to adapt to the environment
Lighter
Lift more |
Our Services
We have more than 1 decade experience in supplying custom hydraulic cylinders with provided drawings or samples, or if you could provide following specification:
• diameter of bore & rod • stroke |
Company Information
Packaging & Shipping
Back to home
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Structure: | Series Cylinder |
---|---|
Material: | Stainless Steel |
Weight (Kg): | 100 |
Condition: | New |
Standard or Nonstandard: | Standard |
Warranty: | 6 Months |
Customization: |
Available
|
|
---|
Can telescopic cylinders be used in both mobile and stationary machinery?
Yes, telescopic cylinders can be used in both mobile and stationary machinery. Here’s a detailed explanation:
Versatility:
Telescopic cylinders are highly versatile and can be integrated into a wide range of machinery, regardless of whether it is mobile or stationary. The modular design and customizable features of telescopic cylinders make them adaptable to various applications and industries.
Mobile machinery:
In mobile machinery, such as construction equipment, agricultural machinery, material handling vehicles, and truck-mounted cranes, telescopic cylinders play a crucial role. They are commonly used for tasks such as lifting and lowering loads, extending and retracting booms or arms, tilting or dumping containers, and providing stability and support. The compactness of telescopic cylinders is particularly advantageous in mobile machinery, where space constraints are common.
Stationary machinery:
Telescopic cylinders are also well-suited for stationary machinery, including industrial equipment, manufacturing machinery, hydraulic presses, and material processing systems. In these applications, telescopic cylinders are used for tasks such as lifting heavy objects, adjusting heights or positions, applying pressure or force, and controlling movements. The extended reach and high force output of telescopic cylinders make them suitable for stationary machinery that requires precise and controlled motion.
Common applications:
Telescopic cylinders can be found in a variety of common applications across both mobile and stationary machinery. Some examples include:
- Crane trucks: Telescopic cylinders enable the extension and retraction of crane booms, allowing for lifting and positioning of heavy loads at various heights and distances.
- Front-end loaders: Telescopic cylinders support the lifting and tilting of buckets or forks, facilitating material handling and loading operations.
- Dump trucks: Telescopic cylinders enable the tilting of dump truck beds, allowing for controlled unloading of materials.
- Scissor lifts: Telescopic cylinders provide vertical lifting and lowering capabilities, allowing for elevated work platforms and access to higher areas.
- Hydraulic presses: Telescopic cylinders apply force to compress or shape materials in manufacturing processes.
These examples illustrate the versatility and applicability of telescopic cylinders in both mobile and stationary machinery.
It’s important to consider the specific requirements of each machinery application and consult with manufacturers or industry experts to ensure the selection and integration of telescopic cylinders that meet the operational needs and safety standards.
Can telescopic cylinders be used in aerial work platforms for extended reach?
Yes, telescopic cylinders are commonly used in aerial work platforms to achieve extended reach. Here’s a detailed explanation:
Increased working height:
Telescopic cylinders enable aerial work platforms to reach greater heights compared to other types of lifting mechanisms. The multi-stage design of telescopic cylinders allows for sequential extension, providing incremental increases in working height. This extended reach capability is crucial for accessing elevated areas such as construction sites, maintenance tasks, or elevated platforms.
Flexible reach adjustment:
Telescopic cylinders offer flexibility in adjusting the reach of aerial work platforms. By extending or retracting the cylinders, operators can modify the platform’s horizontal reach according to the specific job requirements. This flexibility allows for precise positioning of the platform, ensuring safe and efficient access to work areas at varying distances from the base.
Stability and load capacity:
Telescopic cylinders contribute to the stability and load capacity of aerial work platforms during extended reach operations. The cylinders provide structural support and help distribute the weight of the platform and the load being lifted. This load distribution ensures stability, minimizes the risk of tipping or tilting, and allows for safe operation even at maximum reach.
Controlled movements:
Telescopic cylinders enable controlled and smooth movements of aerial work platforms. The hydraulic control system regulates the extension and retraction of the cylinders, allowing for precise control over the platform’s vertical and horizontal motions. This controlled movement enhances operator safety, minimizes vibrations, and enables accurate positioning of the platform during extended reach tasks.
Compact design:
Telescopic cylinders offer a compact design that allows for efficient integration into aerial work platforms. The cylinders can be retracted when not in use, minimizing the space occupied by the lifting mechanism. This compactness allows for better maneuverability, improved accessibility in confined spaces, and efficient transportation of the aerial work platform.
Integration with other platform features:
Telescopic cylinders can be integrated with other features of aerial work platforms to enhance functionality. For example, they can be combined with articulating booms or rotating platforms to achieve versatile reach and positioning capabilities. This integration expands the range of applications for aerial work platforms, enabling them to navigate obstacles, reach over obstacles, or access difficult-to-reach areas.
Advantages of telescopic cylinders in aerial work platforms:
Telescopic cylinders offer several advantages when used in aerial work platforms for extended reach:
- Increased working height for accessing elevated areas
- Flexible reach adjustment for precise positioning
- Stability and load capacity during extended reach
- Controlled movements for operator safety
- Compact design for maneuverability and transportation
- Integration with other platform features for enhanced functionality
Overall, telescopic cylinders are a reliable and efficient choice for achieving extended reach in aerial work platforms. Their ability to increase working height, provide flexibility in reach adjustment, ensure stability, enable controlled movements, offer a compact design, and integrate with other platform features makes them well-suited for a wide range of aerial work applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in aerial work platforms.
Can telescopic cylinders be customized for specific machinery and equipment?
Yes, telescopic cylinders can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation:
Customizable stroke length:
Telescopic cylinders can be designed and manufactured with customized stroke lengths to suit the specific needs of machinery and equipment. The stroke length determines the maximum extension or retraction distance of the cylinder and can be tailored to match the required range of motion for a particular application.
Adjustable force and speed:
The hydraulic control system of telescopic cylinders allows for adjustability in terms of force and speed. The system can be configured to provide the necessary force output for the machinery or equipment, ensuring optimal performance. Additionally, the speed of extension and retraction can be adjusted to match the operational requirements, enabling precise and efficient operation.
Mounting options:
Telescopic cylinders can be customized with different mounting options to facilitate easy integration with specific machinery and equipment. Mounting configurations can vary depending on factors such as available space, mounting orientation, and compatibility with existing systems. Manufacturers can provide various mounting solutions to ensure seamless installation.
Sealing and protection:
In certain applications, telescopic cylinders may require specialized sealing and protection features. Manufacturers can customize the cylinder design to incorporate seals and protective coatings that are suitable for the working environment. This customization helps enhance the longevity and reliability of the cylinder, especially in harsh operating conditions.
Material selection:
Telescopic cylinders can be manufactured using different materials to meet specific machinery and equipment requirements. Material selection depends on factors such as load capacity, operating temperature, corrosion resistance, and weight considerations. Manufacturers can offer material options to ensure the cylinder’s compatibility and performance in the intended application.
Integration with control systems:
Telescopic cylinders can be integrated with control systems and sensors to enable advanced functionality and automation. Customization may involve incorporating position sensors, pressure sensors, or other feedback devices to provide real-time data and enhance the overall performance and safety of the machinery or equipment.
Overall, telescopic cylinders can be customized in terms of stroke length, force and speed adjustability, mounting options, sealing and protection features, material selection, and integration with control systems. This customization allows telescopic cylinders to be tailored to the specific requirements of machinery and equipment, ensuring optimal performance and functionality.
It’s important to collaborate with the manufacturer or a qualified expert to determine the appropriate customization options and ensure compliance with relevant industry standards and regulations.
editor by Dream 2024-05-07
China high quality Standard Pull Rod Hydraulic Cylinder Telescopic Hydraulic Cylinder vacuum pump distributors
Product Description
Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.
Q2: How to make payment?
A2: Paypal, Western Union, Money Gram or T/T transfer
Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.
Q4: What is the packing method?
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.
Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.
Q6: What is the warranty
A6: 12 months against B/L date
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 60/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can telescopic cylinders be used in material handling equipment for reach and lift?
Yes, telescopic cylinders are commonly used in material handling equipment to provide reach and lift capabilities. Here’s a detailed explanation:
Role in material handling:
Telescopic cylinders play a crucial role in material handling equipment by extending the reach and enabling the lifting of heavy loads. These cylinders are typically employed in equipment such as forklifts, telehandlers, reach stackers, and aerial work platforms.
Reach extension:
Telescopic cylinders allow material handling equipment to extend their reach by extending the boom or lifting arm. The nested design of the cylinder, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access materials at greater heights or reach into confined spaces.
Lifting capacity:
Telescopic cylinders provide the necessary lifting force to handle heavy loads in material handling equipment. The cylinder’s bore size, rod diameter, and overall construction are engineered to withstand the forces exerted during lifting and ensure safe and efficient load handling.
Precision control:
Telescopic cylinders offer precise control over the extension and retraction of the lifting arm or boom. The hydraulic control system regulates the flow of hydraulic fluid to each stage of the cylinder, allowing for smooth and controlled movement. This precise control is essential in material handling applications to ensure accurate positioning of loads and safe operation.
Compactness and flexibility:
Telescopic cylinders contribute to the compactness and flexibility of material handling equipment. By retracting the cylinder stages, the overall length of the equipment can be minimized, making it easier to maneuver in tight spaces. Additionally, the ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Variety of material handling equipment:
Telescopic cylinders are utilized in a wide range of material handling equipment to enhance reach and lift capabilities. Forklifts, for example, often incorporate telescopic cylinders to extend the forks and reach into pallet racks. Telehandlers and reach stackers utilize telescopic cylinders to extend the lifting arm and reach high stacking heights. Aerial work platforms utilize telescopic cylinders to extend the platform and provide elevated access for maintenance or construction tasks.
Advantages of telescopic cylinders in material handling:
Telescopic cylinders offer several advantages in material handling equipment:
- Increased reach: Telescopic cylinders allow operators to extend the equipment’s reach, enabling access to materials at greater heights or in confined spaces.
- Enhanced lifting capacity: Telescopic cylinders provide the necessary lifting force to handle heavy loads, expanding the equipment’s lifting capabilities.
- Precision and control: The hydraulic control system of telescopic cylinders allows for precise and controlled movement, ensuring accurate load positioning and safe operation.
- Compactness and flexibility: By retracting the cylinder stages, material handling equipment can be more compact and maneuverable, adapting to different working environments.
Overall, telescopic cylinders are widely used in material handling equipment to extend reach and enhance lifting capabilities. Their precise control, compactness, and flexibility make them essential components in various material handling applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, maintenance requirements, and safety considerations.
Can telescopic cylinders be used in forestry equipment for tree handling?
Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:
Tree felling and extraction:
Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.
Boom and arm extension:
In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.
Precise control:
Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.
Load handling and stacking:
Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.
Stability and balance:
Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.
Advantages of telescopic cylinders in forestry equipment:
Telescopic cylinders offer several advantages in tree handling applications:
- Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
- Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
- Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
- Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
- Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.
Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.
How does a telescopic cylinder differ from standard hydraulic cylinders?
A telescopic cylinder differs from standard hydraulic cylinders in several ways. Here’s a detailed explanation:
A telescopic cylinder, also known as a multistage cylinder or a sleeve cylinder, is specifically designed to provide an extended stroke length while maintaining a compact retracted length. In contrast, a standard hydraulic cylinder typically consists of a single-stage rod and barrel design. Here are the key differences between a telescopic cylinder and a standard hydraulic cylinder:
- Design and Structure: The most significant difference lies in the design and structure. A standard hydraulic cylinder has a single-stage design, meaning it consists of a single rod and barrel. On the other hand, a telescopic cylinder features multiple stages or sleeves nested inside one another. This nested structure allows for a longer stroke length while keeping the retracted length compact.
- Stroke Length: The stroke length of a telescopic cylinder can be significantly longer compared to a standard hydraulic cylinder. The ability to extend in multiple stages allows for a greater overall stroke length, making telescopic cylinders suitable for applications that require extended reach or height adjustment.
- Retracted Length: While a standard hydraulic cylinder has a fixed retracted length equal to its stroke length, a telescopic cylinder offers a compact retracted length. The nested design enables the stages to retract inside one another, reducing the overall length of the cylinder when not in use. This compact retracted length is advantageous in applications with space constraints.
- Load Capacity: Telescopic cylinders are designed to handle substantial loads while maintaining stability. The nested structure provides increased load-bearing capacity compared to standard hydraulic cylinders. The stages distribute the load evenly, ensuring efficient load transfer throughout the extended stroke.
- Complexity and Maintenance: Telescopic cylinders are generally more complex in design compared to standard hydraulic cylinders. They require precise alignment of the stages and may include additional components such as locking mechanisms or guiding systems. This complexity can affect maintenance requirements and may require specialized inspection and servicing procedures.
- Application: Telescopic cylinders are commonly used in applications that require extended reach or height adjustment, such as cranes, dump trucks, aerial platforms, and material handling equipment. Standard hydraulic cylinders, on the other hand, are versatile and widely used in various applications, including industrial machinery, construction equipment, and agricultural machinery.
Despite these differences, both telescopic cylinders and standard hydraulic cylinders are essential components in hydraulic systems. They both rely on hydraulic fluid to generate force and provide linear motion. The selection of the cylinder type depends on the specific requirements of the application, including stroke length, retracted length, load capacity, and available space.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and maintenance of the hydraulic cylinder based on the specific application requirements.
editor by Dream 2024-05-07
China wholesaler Factory Supply 100% Testing Flexible Sustainable Wholesale Telescopic Cylinder with ISO14001 vacuum pump ac
Product Description
U-Series Hydraulic Dock Leveler
The USeries Hydraulic Dock Leveler is a modern material handling solution, renowned for its simplicity, efficiency, and reliability. At the heart of this exceptional performance lies the hydraulic cylinder, a crucial component that transforms hydraulic energy into the motive force required for leveler operation.
The hydraulic cylinder in the USeries is specifically designed to handle the unique challenges of the material handling industry. Its robust construction and advanced materials ensure durability, while the efficient design promotes maximum force output with minimal energy consumption.
A-Series Hydraulic Dock Leveler
The hydraulic cylinder in the ASeries is specifically designed to withstand the demands of
continuous use in a wide range of environments. Its robust construction and advanced materials ensure durability, while the efficient design promotes maximum force output with minimal energy consumption.
Furthermore, the cylinder’s efficiency is key to maintaining optimal operational speed and precision. Advanced engineering features, such as optimized piston geometry and friction-reducing coatings, enhance the cylinder’s performance,contributing to the overall efficiency of the A-Series Hydraulic Dock Leveler.
LHP Series Hydraulic Dock Leveler
The hydraulic cylinder in the LHP Series is a master of converting hydraulic pressure into motive force. This force is pivotal in manipulating the leveler’s position, whether it’s adjusting for height differences or handling heavy loads. Its robust design and construction ensure durability, even under the most rigorous conditions.
The cylinder’s role in maintaining consistent and accurate positioning cannot be overstated. Its precision and reliability are paramount in ensuring safe and efficient operation, particularly when handling bulk materials or containers. It counteracts external forces, maintaining stability and preventing unintended movements during operation.
Verse Series Hydraulic Dock Leveler
The hydraulic cylinder, a prime mover in the Verse Series Hydraulic Dock Leveler, is responsible for converting hydraulic energy into mechanical force. This force is then used to raise and lower the dock leveler, enabling it to adapt to the height differences between the dock and the truck bed. The cylinder’s design and construction must be robust enough to withstand the rigors of continuous use in a wide range of environmental conditions.
The hydraulic cylinder’s performance is crucial for the safe and efficient operation of the dock leveler. It ensures that the leveler plate maintains a consistent and stable position, even under heavy loads. The cylinder’s reliability is further enhanced by its ability to counteract any external forces that may act on the leveler, thus preventing unintended movements.
About Us
Established in 1988, HangZhou LD Machinery Co, LTD. (hereinafter referred to “LD”) is a leading manufacturer specializing in the design, research, development, manufacture and marketing in the hydraulic industry. Being one of major suppliers of customized components and cylinders for manufacturers spreaded all over the world, the company is committed to offer high quality products with competitive prices and excellent service worldwide.
Headquartered in HangZhou City, ZHangZhoug Province, the company wholly owns a subsidiary production factory named “HangZhou YUEWEI Hydraulic Technology Co., Ltd”, which covers an area of more than 380,000 square meters, possesses abundant technical strength and sound production management system, superior machining production equipment, strict and effective quality control system, advanced and excellent inspection instruments.
More than 35 years experience in machining industry, with over 10 experienced technical engineers and 150 skilled workers, LD has a senior engineering technical team with special skills and rich experience in product design, casting, forging, and CNC machining, can handle special material, structure, defect and processing, meet the evolving needs, and provide optimal solution and real one-stop service to customers.
Hydraulic Cylinder Producing Process
Step1: Quality Control on Raw Material
We have our own lab in factory, inspect the raw material and do the test. For every batch of material we received, we will ask supplier provide their certificate, and then cut them to do the test again to see if the results match the certification. Also, every batch we received, we will cut them into pieces to check the air bubbles. Once they are all qualified, we will accept it, and all detail information will be recording in our ERP system. We will also pay lot of attention on the salt spray test for chrome rod. Every month, we will cut the material, put them into test machine to see if it reach the requirement. All the result will be recorded at our QC department. If customer need, we can provide it.
Step2: Quality Control on Machining
we start doing components machining from 1988 with 36 years experience now and insist doing 100% inspection. We spend lots of money, invest on auto robots and machines. Now half of the producing line is by robot so that we can ensure our quality be stable good. For every part of the cylinder, we do 3 times inspecting. Firstly, workers will do self inspection. Secondly, we have tour-hour inspection checking the products, 2 times in the morning and 2 times in the afternoon, make sure that every step is good. After the products are all completed, we will do 100% inspection. For thread, for the tolerance, everything, we need double check. Also, we have specific warehouse just for the measuring tools. Every inspector have their own measuring tool and we will check the measuring tools regularly to make sure they are all in good condition, so that the measuring results will be convincing.
Step3: Quality Control on Welding
We are qualified to AWS certification, which is very popular in North American market. First, for the visual test, we will make sure that every components are welded good, look beautiful. And the second, we need to check the penetration. We have more than 15 years experience, we do know what kind of designing angle can make the cylinder welding strong. Once we finish the first article, we will cut it and analyse the welding to see if it is fulfill the groove. And then do the radiographic testing to make sure there is no gap inside. What’s more, we will do the ultrasonic test to check the program for the robot. Now 80% of welding is doing by robot. Once the program confirmed, no 1 can change it unless the welding manager, and they only have 5% right.
Step4: Quality Control on Assembling
For assembling, we have some difference with others. The brand we uses for seals are all those famous brand like Aston, Parker, Hallite. The cylinder we give to our customer has 2 years warranty. For our company, we engrave our part number and manufacturing date for the quality warranty. So no matter for seals or any others, as long as they are parts of cylinder, if it is under 2 years, we will take responsibility for them. And we will do the test for every cylinder like for pressure after we finish assembling.
Step5: Quality Control on Painting
We have our half auto painting line. Right now, we can paint about 1500 cylinders per day, which is about 1 container. Before we do the painting, we will do the wash first and for every cylinder, we will test for hardness, thickness and adhesion to make sure the painting are all good, which will be recorded into OQC report, print out and stick on the box, ship to you with your products.
Step6: Hydraulic Cylinder Packing
For every cylinder, we have the stick to show the detail information like bore size, stroke and working pressure. And we will use individual plastic bag packing. If customer need, we can also use individual carton box packing. We will fasten 1 floor after 1 floor with plat, so customer can only cut what they need and other layer will still be fasten. Moreover, there will be plywood pallet or plywood box for customer choosing. We will also send the loading picture to customer after we ship them to make sure everything is well loaded in China.
Packing Reference
Order Process
Enterprise Features
FAQ
Q1. What is LD product’s quality assurance?
100% inspection for each product before shipping with inspection rereport for tracking.
Q2: How long is the warranty on LD products?
The warranty is 2 years for general products since the date of shipment.
Q3: How LD deal with the quality problem during warranty period?
1. LD will take the corresponding cost caused by customer local reparing.
2. LD will provide the product by free if the repair cost is higher than the product value, but the freight involved shall be borne by customer side.
Q4: How to ensure the order can be shipped on time?
LD will send the “production schedule” every week after receiving customers’ orders. If any delays, LD will inform customers 3 weeks in advance, so as to facilitate the customer to arrange the schedule.
Q5: Does LD offer delivery service?
Yes. LD has deep cooperation with logistics companies all over the world to provide customers with quick and convenient “Door-to-Door services”,including sea, air and express.
Q6: How LD control the product quality?
1. Raw materials: We will test the material of each batch of raw materials we receive, and the piston rod will be tested with salt spray. This is to ensure that the material of our products meets the requirements at the beginning.
2. Processing: We have the leading machining equipment, and obtained ISO9001 certification.
3. Welding: Our factory is equipped with welding robots, and has obtained the AWS certification.
4. Assembly pressure test: 100% testing with OQC report for cHangZhou. The seals we use are: Hallite, Aston and Gapi
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Local Service Support |
---|---|
Warranty: | 2 Years Warrenty |
Working Pressure: | 2500psi (21MPa) ~ 4000psi (28MPa) |
Oil Port: | Sea/NPT/BSPP |
Seal Kits: | Parker/Hallite/Gapi |
Quality Check: | 100% Testing Before Shipping |
Samples: |
US$ 199/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do telescopic cylinders handle variations in load capacity and weight?
Telescopic cylinders are designed to handle variations in load capacity and weight effectively. Here’s a detailed explanation:
Load-specific design:
Telescopic cylinders are engineered with load-specific design considerations to accommodate variations in load capacity and weight. Manufacturers take into account factors such as the maximum expected load, the range of anticipated loads, and the required safety factors. The cylinder’s components, materials, and dimensions are selected and configured accordingly to provide the necessary strength and stability.
Multiple stages:
The nested structure of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for adaptability to different loads. Each stage can handle a specific portion of the load, and the collective capacity of all stages determines the overall load capacity of the cylinder. By adding or removing stages, telescopic cylinders can be customized to suit different load requirements, providing flexibility in handling variations in weight.
Hydraulic system control:
The hydraulic control system of telescopic cylinders plays a vital role in managing variations in load capacity. By regulating the flow of hydraulic fluid to each stage, operators can control the extension and retraction force applied to the cylinder. This control allows for adjustments based on the specific load and weight requirements, ensuring the cylinder operates within its safe working limits.
Pressure relief and overload protection:
Telescopic cylinders are often equipped with pressure relief valves and overload protection mechanisms to safeguard against excessive loads. Pressure relief valves help prevent over-pressurization of the hydraulic system by diverting excess fluid flow, protecting the cylinder from potential damage. Overload protection mechanisms, such as overload sensors or mechanical stops, are designed to activate and halt the cylinder’s movement if the load exceeds the safe operating limits.
Load distribution and stability:
Telescopic cylinders contribute to load distribution and stability. The nested design distributes the load across multiple stages, reducing stress on individual components and enhancing overall stability. Proper weight distribution on the machinery or equipment, as well as secure attachment of the load, further contribute to maintaining stability and ensuring safe operation.
It’s important to note that while telescopic cylinders can handle variations in load capacity and weight, it is crucial to operate within the specified load limits and follow the manufacturer’s guidelines. Exceeding the recommended load capacity can compromise the safety, performance, and longevity of the telescopic cylinder and the machinery it is installed on.
Consulting the manufacturer’s documentation, engineering specifications, and relevant industry standards is essential for understanding and adhering to the appropriate load capacity and weight guidelines when using telescopic cylinders.
How do telescopic cylinders handle variations in hydraulic seal technology?
Telescopic cylinders are designed to accommodate variations in hydraulic seal technology. Here’s a detailed explanation:
Compatibility with different seal types:
Telescopic cylinders are engineered to be compatible with various types of hydraulic seals available in the market. Whether it’s a standard O-ring seal, lip seal, V-ring seal, or any other seal design, the cylinder’s construction takes into account the requirements of different seal technologies. This compatibility ensures that telescopic cylinders can effectively handle variations in hydraulic seal technology.
Seal retention and protection:
Telescopic cylinders incorporate features to retain and protect hydraulic seals. The cylinder design includes seal grooves, seal retainers, or other mechanisms that securely hold the seals in place, preventing their displacement or damage during operation. This seal retention and protection mechanism ensures the longevity and effectiveness of the seals, regardless of the specific seal technology used.
Seal lubrication and contamination prevention:
Telescopic cylinders address the lubrication and contamination concerns associated with different seal technologies. The cylinder’s hydraulic system is designed to provide proper lubrication to the seals, ensuring smooth movement and reducing friction. Additionally, measures such as seal scrapers or wipers are implemented to prevent the ingress of contaminants, such as dust, dirt, or moisture, which could compromise the performance of the seals. These lubrication and contamination prevention mechanisms cater to the specific requirements of various seal technologies.
Seal replacement and maintenance:
Telescopic cylinders are designed to facilitate seal replacement and maintenance procedures. The cylinder construction allows for easy access to the seals, simplifying the replacement process when necessary. This feature is advantageous when dealing with different seal technologies, as it enables swift and efficient maintenance, regardless of the specific seal design being used.
Adaptability to seal advancements:
Telescopic cylinder designs often incorporate adaptability to advancements in hydraulic seal technology. Manufacturers continuously develop new seal technologies to improve performance, durability, and efficiency. Telescopic cylinders are designed with flexibility to accommodate future advancements, ensuring compatibility with emerging seal technologies and allowing for upgrade possibilities without significant modifications to the cylinder itself.
Overall, telescopic cylinders are engineered to handle variations in hydraulic seal technology through compatibility with different seal types, seal retention and protection features, seal lubrication and contamination prevention mechanisms, ease of seal replacement and maintenance, and adaptability to seal advancements. These design considerations ensure that telescopic cylinders can effectively work with different seal technologies, providing reliable and efficient performance in hydraulic systems.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the recommended seal types and maintenance practices for telescopic cylinders.
What are the benefits of using telescopic cylinders for long-reach tasks?
Telescopic cylinders offer several benefits when it comes to long-reach tasks. Here’s a detailed explanation:
Extended reach:
One of the primary advantages of telescopic cylinders is their ability to provide extended reach. By utilizing a nested structure with multiple stages, telescopic cylinders can achieve significantly longer stroke lengths compared to other types of cylinders. This extended reach is beneficial for tasks that require accessing or manipulating objects or materials at a distance.
Compact retracted length:
Despite their extended reach, telescopic cylinders have a relatively compact retracted length. This is advantageous in situations where space is limited or when a shorter cylinder length is preferred. The compact retracted length enables telescopic cylinders to be installed in confined areas or integrated into equipment without excessive protrusion.
Flexible and adjustable:
Telescopic cylinders offer flexibility and adjustability, allowing for fine-tuning of the stroke length, force, and speed. This adjustability is particularly useful in long-reach tasks where precise control and positioning are required. The hydraulic control system of telescopic cylinders enables operators to optimize the cylinder’s performance according to the specific task and operating conditions.
High force capabilities:
Telescopic cylinders are designed to handle heavy loads and can generate substantial force. This makes them suitable for long-reach tasks that involve lifting, pushing, pulling, or manipulating objects at a distance. The high force capabilities of telescopic cylinders ensure that the required power is available to perform the task effectively.
Enhanced stability:
Telescopic cylinders are engineered to provide stability during long-reach tasks. The nested structure and hydraulic control system work together to ensure synchronized and controlled extension and retraction of the stages. This stability is crucial for maintaining precise positioning, minimizing oscillations or vibrations, and preventing potential hazards or accidents.
Versatility:
Telescopic cylinders find applications in various industries and tasks that involve long-reach requirements. They are commonly used in construction equipment, material handling machinery, cranes, booms, and many other applications where extended reach is necessary.
Overall, the benefits of using telescopic cylinders for long-reach tasks include extended reach, compact retracted length, flexibility, high force capabilities, enhanced stability, and versatility. These advantages make telescopic cylinders a valuable choice for tasks that require reaching or manipulating objects at a distance.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and operation of telescopic cylinders based on the specific long-reach task requirements.
editor by Dream 2024-05-06
China best Korean Keonyoung Hydraulic Cylinder Kyc Metallurgical Cylinder Kha-Fa63c140b200ab Standard Rod Cylinder vacuum pump connector
Product Description
Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.
Q2: How to make payment?
A2: Paypal, Western Union, Money Gram or T/T transfer
Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.
Q4: What is the packing method?
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.
Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.
Q6: What is the warranty
A6: 12 months against B/L date
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?
Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:
1. Hydraulic Fluid and Pressure:
– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.
2. Piston and Cylinder Design:
– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.
3. Control Valves and Flow Control:
– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.
4. Cushioning and Damping:
– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.
5. Load Balancing:
– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.
6. Feedback and Control Systems:
– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.
7. Maintenance and Servicing:
– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.
In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.
Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders
Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:
- Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
- Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
- Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
- Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
- Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.
In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.
Can you explain the role and significance of hydraulic cylinders in machinery?
Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:
Role of Hydraulic Cylinders:
– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.
– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.
– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.
– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.
– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.
Significance of Hydraulic Cylinders:
– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.
– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.
– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.
– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.
– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.
– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.
Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.
editor by Dream 2024-05-06
China supplier Multi Stage Custom Made Lifting Telescopic Hydraulic Cylinder for Dump Truck vacuum pump and compressor
Product Description
Multi Stage Custom Made Lifting Telescopic Hydraulic Cylinder for Dump Truck
Product Description
Product Description:
Work Press | 7/14/16/21/31.5MPa 37.5/63MPa Can be Customized |
Material | Aluminum,Cast Iron,45mnb Steel,Stainless Steel, carbon steel |
Bore Size | 80mm-380mm, Customizable |
Rod size | 60mm-350mm, Customizable |
Stage | 2~6 stages |
Paint Color | Red,Yellow,Blue,Brown,Customizable |
Mounting | Earring,Flange,Clevis.Foot,Trunnion,Customizable |
Warrenty | 18 months |
MOQ | 1 pcs |
Delivery Time | 15-45 Days,Also depands on specific demands |
Certification | ISO9001,CE, SGS |
Product Display:
Quality Assurance
Quality Assurance
Inspection Type | Inspection Standard |
Raw Material Inspection | Before storage, QC takes the measurement of the raw materials. |
Process Material Inspection | During the production, QCs conduct a random inspection. Before the hydraulic cylinder parts transferred to the next process, QCs takes inspection. |
Final Function Testing | All the hydraulic cylinders take hydraulic function test |
Mounting Method:
Company Profile
Our Factory:
About US:
Tianjian Hydraulic. is a leader in the engineering design and manufacture of high pressure hydraulic cylinders that are widely used in the fields of mining, metallurgy, construction machinery, marine, offshore, water engineering, wind power, hydraulic press, agricultural machinery, and so on.
The Tianjian team has almost 8 years experience delivering innovative and dependable solutions to meet OEM high pressure hydraulic cylinder needs.
If possible, when contact with us, please apply information as below
Bore |
Rod |
Stroke |
Work Pressure |
Mounting |
Work environment |
|
|
|
|
|
|
Or you can offer us your sketch diagram or photos so that we could understand you exactly meaning, help us avoid mistakes.
And if you have samples, we can manufacture according to your samples after sending to us.
Welcome to our factory if you have any time.
Your satisfaction is our biggest motivation.
Now, you can contact with us for any question or inquiry.
Packaging & Shipping
Packing & Delivery:
Appliactions:
Application:dump truck
FAQ
FAQ:
1, What does your company do?
A: we are a supplier of high quality Hydraulic Cylinder for more than 8 years.
2, Are you a manufacture or a trading company?
A: We are a manufacturer. Warmly welcome to visit us!
3, What certificate do you have?
A: All our factories are ISO certificated. And our main suppliers of materials and parts are with CE, RoHS, and UL certificates.
4, How long is your delivery time?
A: The delivery time depends on different products and quantity. The cylinder usually need about 15-60 days.
5, Can you make parts as customer’s requirement or drawing?
A: Yes, we can OEM for you as your drawings. Our engineer also can give you professional support for technical suggestions.
6, What kind of payment terms do you accept?
A: We prefer T/T through bank. 30% when order is confirmed and 70% before shipment.
7, What is your warranty policy?
A: All our products are warranted for 1 full year from date of delivery against defects in materials and workmanship. This warranty does not cover parts that are worn out through the course of normal operation or are damaged through negligence. We serious remind that unclean hydraulic oil will definitely cause damage to your Hydraulic components. And this damage is not included in the warranty range. So we strongly suggest you to use new clean oil or make sure the system oil are clean when using our parts
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | High Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 600/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do telescopic cylinders handle variations in load capacity and weight?
Telescopic cylinders are designed to handle variations in load capacity and weight effectively. Here’s a detailed explanation:
Load-specific design:
Telescopic cylinders are engineered with load-specific design considerations to accommodate variations in load capacity and weight. Manufacturers take into account factors such as the maximum expected load, the range of anticipated loads, and the required safety factors. The cylinder’s components, materials, and dimensions are selected and configured accordingly to provide the necessary strength and stability.
Multiple stages:
The nested structure of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for adaptability to different loads. Each stage can handle a specific portion of the load, and the collective capacity of all stages determines the overall load capacity of the cylinder. By adding or removing stages, telescopic cylinders can be customized to suit different load requirements, providing flexibility in handling variations in weight.
Hydraulic system control:
The hydraulic control system of telescopic cylinders plays a vital role in managing variations in load capacity. By regulating the flow of hydraulic fluid to each stage, operators can control the extension and retraction force applied to the cylinder. This control allows for adjustments based on the specific load and weight requirements, ensuring the cylinder operates within its safe working limits.
Pressure relief and overload protection:
Telescopic cylinders are often equipped with pressure relief valves and overload protection mechanisms to safeguard against excessive loads. Pressure relief valves help prevent over-pressurization of the hydraulic system by diverting excess fluid flow, protecting the cylinder from potential damage. Overload protection mechanisms, such as overload sensors or mechanical stops, are designed to activate and halt the cylinder’s movement if the load exceeds the safe operating limits.
Load distribution and stability:
Telescopic cylinders contribute to load distribution and stability. The nested design distributes the load across multiple stages, reducing stress on individual components and enhancing overall stability. Proper weight distribution on the machinery or equipment, as well as secure attachment of the load, further contribute to maintaining stability and ensuring safe operation.
It’s important to note that while telescopic cylinders can handle variations in load capacity and weight, it is crucial to operate within the specified load limits and follow the manufacturer’s guidelines. Exceeding the recommended load capacity can compromise the safety, performance, and longevity of the telescopic cylinder and the machinery it is installed on.
Consulting the manufacturer’s documentation, engineering specifications, and relevant industry standards is essential for understanding and adhering to the appropriate load capacity and weight guidelines when using telescopic cylinders.
Can telescopic cylinders be used in manufacturing machinery for material processing?
Yes, telescopic cylinders are commonly used in manufacturing machinery for material processing tasks. Here’s a detailed explanation:
Material handling and manipulation:
Telescopic cylinders are utilized in manufacturing machinery to handle and manipulate materials during the processing stages. They enable lifting, lowering, pushing, or pulling of components, parts, or raw materials, facilitating various manufacturing operations such as cutting, bending, shaping, or assembly.
Positioning and alignment:
Telescopic cylinders contribute to precise positioning and alignment of materials in manufacturing machinery. The controlled extension and retraction of the cylinders allow operators to align workpieces accurately, ensuring consistent quality, dimensional accuracy, and proper fit during material processing.
Adjustable working height:
In manufacturing machinery, telescopic cylinders provide the advantage of adjustable working height. By extending or retracting the cylinders, the height of the work surface or processing area can be modified to accommodate different material sizes or operator preferences. This flexibility enhances ergonomics and facilitates efficient material processing.
Modular design for customization:
Telescopic cylinders feature a modular design that allows for customization according to specific manufacturing requirements. The number of stages or sections can be adjusted to achieve the desired extended length and capacity of the cylinder. This modularity enables telescopic cylinders to be tailored to the dimensions and processing needs of different manufacturing machinery.
Force generation and control:
Telescopic cylinders generate the necessary force to perform material processing tasks. The hydraulic control system regulates the extension and retraction of the cylinders, allowing operators to control the force applied during cutting, bending, or other processing operations. This force control ensures precise and consistent material processing while minimizing the risk of damage or deformation.
Space optimization:
Telescopic cylinders contribute to space optimization in manufacturing machinery. Their compact design allows for efficient utilization of available space, especially in equipment with limited footprint. The telescopic nature of the cylinders enables them to retract when not in use, minimizing the space occupied and allowing for better overall layout and arrangement of the machinery.
Advantages of telescopic cylinders in manufacturing machinery:
Telescopic cylinders offer several advantages in material processing applications within manufacturing machinery:
- Material handling and manipulation capabilities
- Precise positioning and alignment of materials
- Adjustable working height for versatility
- Modular design for customization
- Force generation and control for consistent processing
- Space optimization in compact machinery
Overall, telescopic cylinders are widely used in manufacturing machinery for material processing tasks, providing material handling, positioning, and force control capabilities. Their flexibility, modularity, and precise control contribute to efficient and accurate material processing operations in manufacturing.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in manufacturing machinery.
Can telescopic cylinders be used for both lifting and pushing applications?
Yes, telescopic cylinders can be used for both lifting and pushing applications. Here’s a detailed explanation:
Lifting applications:
Telescopic cylinders are commonly employed in lifting applications where they provide the necessary force and stroke length to lift heavy loads. The nested structure of telescopic cylinders allows for extended stroke lengths while maintaining a compact retracted length. The hydraulic system supplies pressurized fluid to each stage, generating the force required for lifting. As the stages extend, the load is raised to the desired height.
Pushing applications:
In addition to lifting, telescopic cylinders can also be used for pushing applications. In these cases, the telescopic cylinder applies force in the opposite direction, typically to move or push objects or components. The hydraulic system supplies pressurized fluid to each stage, causing the stages to extend and exert a pushing force. The nested structure of the cylinder ensures that the force is transmitted through each stage, allowing for effective pushing.
Benefits of telescopic cylinders for lifting and pushing:
Telescopic cylinders offer several benefits for both lifting and pushing applications:
- Extended stroke length: Telescopic cylinders provide a longer stroke length compared to other types of cylinders, allowing for increased reach and movement in lifting and pushing operations.
- Compact retracted length: Despite their extended stroke length, telescopic cylinders have a compact retracted length. This is advantageous when space is limited or when a shorter cylinder length is desired.
- High force capabilities: Telescopic cylinders are designed to handle heavy loads and can generate significant force, making them suitable for lifting and pushing applications that require substantial power.
- Adjustability and flexibility: The hydraulic control system of telescopic cylinders allows for adjustability in terms of force, speed, and stroke length, providing flexibility and adaptability to different lifting and pushing requirements.
- Versatility: Telescopic cylinders can be used in various industries and applications, including construction, material handling, automotive, and more, making them versatile solutions for lifting and pushing tasks.
It’s important to consider the specific requirements of the lifting or pushing application and consult the manufacturer’s guidelines to ensure the proper selection, installation, and operation of telescopic cylinders in order to achieve safe and efficient performance.
editor by Dream 2024-05-06
China Best Sales CZPT S53DC-14-84 Type Single Acting Replace Telescopic Dump Truck Hoist Hydraulic Cylinder vacuum pump for ac
Product Description
CHINAMFG type SAT S53DC-14-84 Replacement Dump Hoist Cylinder
General information
Parker Type Telescopic Hydraulic Cylinders are widely used in North America and South America.
Our company enjoys a reputation for quality custom built cylinders that demonstrate engineering know how and adept manufacturing.
Bore diameter | Up to 20″ |
Stroke | Up to 500″ |
Operating pressures | Up to 10000psi |
Materials & Coatings | Stainless steel Electroless nickel Nitriding Chrome Double chrome |
Using range
Parker type mobile cylinder is recognized as the brand of hydraulic cylinders for mobile equipment and leading products to refuse, mining, truck, material handling, and positioning markets. Parker’s Mobile Cylinder Division products include double and single acting telescopic cylinders, rod cylinders, and “smart cylinders” with internal electronic controls.
Specification
Categories | Single-Acting Telescopic Cylinders |
Function | Dump Hoist / Body Raise / Tipping |
Weight | 215 lbs |
Base End Mount Type | Cross tube |
Rod End Mount Type | Pin -eye drilled thru lug |
Closed | 41.18″ |
Tele Largest Stage OD | 5″ |
Telescopic Number of Stages | 3 |
Telescopic Stroke | 84″ |
Excavator is the most widely used construction machinery.
The shock load, harsh working environment, precision movement control require high standards on excavator cylinders.
ROCA guarantees excavator cylinder high performance of abrasion resistance and operation stability in any harsh condition has and gains recognition from every CHINAMFG customer with good quality at a lower cost.
Roca manufactures full-size excavator cylinders for mini excavators to large excavators.
Xihu (West Lake) Dis. Mining Group Co., Ltd. is a sizable multinational mining group performing most competitively in Chinese mining industry. CHINAMFG locate in the same CHINAMFG Mining output area, as the mining cylinder plant that grew up in the mining industry, we repair and reman a lot of mining haul truck cylinder. For a decade CHINAMFG has been focused on the production of various types of imported mine-used off-highway trucks & mining trucks.Our cylinders are mainly applied to world-famous brands such as Cat, Komatsu, Hitachi, Liebherr, BELAZ, and other famous international brands.
Single-Acting Telescopic Cylinders
This type of cylinder applies hydraulic pressure in 1 direction only and the return of the telescopic stages is by load such as a truck-trailer.
ROCA single-acting multistage hoists are used widely throughout the transport sector, where they are used in tip trucks servicing agriculture, earthmoving, construction, food processing applications.
Double-Acting Telescopic Cylinder
This type of cylinder is constructed with porting to both the annular and full bore area so hydraulic pressure can be applied to both surfaces and the cylinder stages can move in multiple directions without the need of an outside force, such as gravity.ROCA double-acting multi-stage cylinders are used in a wide variety of applications across many industries where space restrictions prohibit the use of a rod cylinder and require a compact telescopic cylinder design.
There are a wide range of products in the cylinder industry and having a specialist working on behalf of the customer is very important. With our years of experience, our business is positioned to provide prompt service, value and long lasting customer relationships.We work toward getting you better products and better service with competitive price.
FAQ
Q1.Do you have MOQ?
Depending on different ideas, Can be negotiated. The larger the quantity is, the competitive the unit price will be.
Q2.Should the customer pay the delivery fee, How much is it?
For the delivery fee, many samples are being requested to be sent, so we must get the delivery fee.
If you tell me to use the appointed Express, you will give me your express account or you will pay according to the Express.
If you do not request, I will choose a cheap one in China.
Q3.How about the after sale service?
1) We will always keep the quality the same as the buyer’s samples and if there is something with the quality, we will make compensation for our customers.
2) We will suggest our packing and take charge in our packing, we will keep the goods safe in the delivery.
3) We will trace the goods from the production to selling, we will solve the problems in the selling for our customers.
Q4.When can I get a price?
We usually quote within 24 hours after we get your inquiry.
Q5: Are you a trade company or manufacturer?
We are a professional manufacturer with our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 1129.73/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What advantages do telescopic cylinders offer in heavy equipment?
Telescopic cylinders offer several advantages in heavy equipment applications. Here’s a detailed explanation:
Compact design:
Telescopic cylinders have a compact design that allows for a relatively small retracted length compared to their extended length. This compactness is advantageous in heavy equipment where space is limited. The reduced length enables the equipment to have a smaller footprint, making it easier to maneuver in confined areas and transport on trailers or trucks.
Extended reach:
Telescopic cylinders provide extended reach capabilities, which is beneficial in heavy equipment operations. The nested design allows for multiple stages to extend, enabling the cylinder to reach greater distances. This extended reach is particularly useful in applications where the equipment needs to lift or push loads over obstacles, reach into deep pits, or access elevated areas.
High force output:
Telescopic cylinders are capable of generating high force output, making them suitable for heavy lifting and pushing tasks. The hydraulic system used in telescopic cylinders allows for amplification of force through the application of hydraulic pressure. This high force output is advantageous in heavy equipment applications that require lifting and moving heavy loads or exerting significant pushing or pulling forces.
Customizable load capacity:
Telescopic cylinders offer load capacity customization. The modular nature of telescopic cylinders allows for the addition or removal of stages, which directly affects the cylinder’s load capacity. By adjusting the number of stages, the cylinder’s load capacity can be tailored to the specific requirements of the heavy equipment, ensuring optimal performance and safety.
Smooth operation:
Telescopic cylinders provide smooth and controlled operation. The hydraulic control system allows for precise control of the cylinder’s extension and retraction, ensuring smooth and synchronized movement of multiple stages. This smooth operation is important in heavy equipment applications where precise positioning, lifting, or pushing is required to avoid damage to the equipment or the load.
Durability and reliability:
Telescopic cylinders are built to withstand heavy-duty usage in demanding environments. They are designed using robust materials and undergo rigorous testing to ensure durability and reliability. The cylinders can withstand high load capacities, harsh operating conditions, and repetitive cycles, making them well-suited for heavy equipment applications that involve continuous and demanding operations.
Overall, telescopic cylinders offer advantages such as compact design, extended reach, high force output, customizable load capacity, smooth operation, durability, and reliability. These advantages contribute to improved efficiency, productivity, and performance of heavy equipment in various industries.
It’s important to consult the manufacturer’s specifications and guidelines to ensure the appropriate selection and application of telescopic cylinders in heavy equipment.
How do telescopic cylinders contribute to stable and safe equipment operation?
Telescopic cylinders play a significant role in ensuring stable and safe equipment operation. Here’s a detailed explanation:
Load distribution:
Telescopic cylinders assist in distributing the load evenly across the equipment. As the cylinders extend or retract, they provide support and help maintain the balance of the load. This load distribution is crucial for preventing equipment instability, reducing the risk of tipping or tilting, and ensuring safe operation.
Weight management:
Telescopic cylinders aid in managing the weight distribution of equipment during various operations. By extending or retracting the cylinders selectively, operators can control the positioning and center of gravity of the load. This helps mitigate the risk of equipment imbalance, enhances stability, and promotes safe equipment operation.
Controlled movements:
Telescopic cylinders enable controlled and precise movements of equipment components. The hydraulic control system regulates the extension and retraction of the cylinders, allowing operators to adjust the speed, force, and position of the movement. This precise control minimizes sudden or jerky motions, reduces the likelihood of equipment instability, and enhances overall safety during operation.
Shock absorption:
Telescopic cylinders provide a level of shock absorption during equipment operation. The design of the cylinders, along with the hydraulic system, helps absorb and dampen sudden shocks or impacts that may occur during material handling or terrain traversal. This shock absorption capability reduces stress on the equipment, minimizes the risk of component failure or damage, and contributes to safe and smooth operation.
Operator safety:
Telescopic cylinders contribute to operator safety by providing stability and control. The stable operation of equipment facilitated by the cylinders reduces the risk of accidents or operator injury caused by equipment instability, tipping, or excessive vibrations. Additionally, the precise control over equipment movements enhances operator confidence and minimizes the likelihood of human error during operation.
Monitoring and feedback:
Telescopic cylinders can be integrated with monitoring systems that provide real-time feedback on cylinder performance, load distribution, and equipment stability. This information allows operators to make informed decisions, take corrective actions if necessary, and ensure ongoing safe operation.
Overall, telescopic cylinders contribute to stable and safe equipment operation through load distribution, weight management, controlled movements, shock absorption, operator safety, and monitoring capabilities. Their role in maintaining equipment stability and providing precise control enhances operational safety and reduces the risk of accidents or equipment failure.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders to ensure safe equipment usage.
Can you explain the purpose and role of telescopic cylinders in machinery?
Telescopic cylinders play a crucial role in various machinery and equipment applications. Here’s a detailed explanation:
Purpose of telescopic cylinders:
Telescopic cylinders are primarily used when an extended stroke length is required while maintaining a compact retracted length. They enable machinery and equipment to achieve extended reach, height adjustment, or lifting capabilities without increasing the overall size or footprint of the cylinder. The purpose of telescopic cylinders is to provide efficient and reliable linear motion in applications that demand long stroke lengths.
Role of telescopic cylinders in machinery:
- Material Handling: Telescopic cylinders are extensively used in material handling machinery, such as cranes, forklifts, and loaders. They enable the extension and retraction of booms, arms, or lifting mechanisms, allowing operators to reach higher or farther to handle and transport materials with ease.
- Dump Trucks and Trailers: Telescopic cylinders are commonly employed in dump trucks and trailers for the tilting and unloading of cargo or bulk materials. The extendable stroke of the cylinder raises the bed or container to dump the contents, enabling efficient unloading and reducing manual labor.
- Aerial Platforms: Telescopic cylinders are essential components in aerial work platforms, such as cherry pickers or scissor lifts. They facilitate the vertical movement and height adjustment of the platform, allowing operators to access elevated work areas safely.
- Construction Equipment: Telescopic cylinders are used in various construction equipment, including excavators, backhoes, and telescopic handlers. They provide the necessary extension and retraction for the boom, arm, or bucket, enabling digging, lifting, and reaching capabilities in construction and earthmoving applications.
- Mobile Equipment: Telescopic cylinders are utilized in mobile equipment, such as telescopic cranes and mobile cranes. They enable the extension and retraction of the boom sections, allowing for increased reach and lifting capacities in lifting and construction operations.
- Specialized Machinery: Telescopic cylinders find application in specialized machinery, such as fire truck aerial ladders, telescopic masts, or telescopic booms in industrial and military equipment. They provide the required extension and retraction for specific tasks, such as firefighting, surveillance, or equipment deployment.
The role of telescopic cylinders in machinery is to provide precise and controlled linear motion, enabling the equipment to perform specific tasks with extended reach, height adjustment, or lifting capabilities. They contribute to the efficiency, versatility, and productivity of machinery in various industries.
It’s important to ensure proper selection, installation, and maintenance of telescopic cylinders based on the specific machinery requirements and manufacturer’s guidelines to ensure safe and reliable operation.
editor by Dream 2024-05-06
China supplier API/DIN Ball Valve Butterfly Valve Double Acting Hydraulic Electric Pneumatic Air Actuator Cylinder vacuum pump connector
Product Description
Product Description
Product Description
Pneumatic cylinder for ball valve gate valve
Floating Ball Valve (CLASS 150~300)
Bolted bonnet, Two-piece Body, Floating Ball
Full or Reduced bore, Blowout Proof Stem
Fire safe and Anti static
Stainless steel ball
ASTM A216 WCB, A351 CF8, A351 CF8M,
A351 CF3, A351 CF3M, A351 CN7M
Standards compliance
Design and Manufacture: API 608, API 6D, BS5351
Face to face(end to end): ANSI B16.10, API 6D
Flanged connection: 2″~24″ to ANSI B16.5
Fire-safe: API 607, API 6FA
Butt welded end: ANSI B16.25
Test and inspection: API 598, API 6D
Main parts and materials
Product name |
AT pneumatic actuator |
material |
aluminum, stainless steel |
application |
fit for ball valve , butterfly valve |
diameter |
DN10~DN100 |
Detailed Photos
Hot sales Products
Our Advantages
Company Profile
Packaging & Shipping
FAQ
Q: Are you a manufacturer or a distributor?
A: We are a valve manufacturer with 25 years of experience in valve development, design, production and sales. Won the top 10 valve manufacturers in China.
Q:Is it a finished product or can be customized?
A:We customize the professional valves you need according to your technical requirements, drawings, parameters, etc.
Q:What is your price term
A:Ex-factory ,FOB
Q:what is the minimum order quantity
A:Small diameter valves is 10pcs/model,large diameter valves is 1pcs/model, if you have special requirements, please communicate with us.
Q:What is the term of payment?
A:T/T or L/C Also,we accept the order to be placed via Made-in-china
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Stainless Steel |
---|---|
Structure: | Piston Cylinder |
Power: | Pneumatic |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can hydraulic cylinders be integrated with advanced control systems and automation?
Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:
1. Electronic Control:
– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.
2. Closed-Loop Control:
– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.
3. Proportional and Servo Control:
– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.
4. Human-Machine Interface (HMI):
– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.
5. Communication and Networking:
– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.
6. Automation and Sequential Control:
– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.
7. Predictive Maintenance and Condition Monitoring:
– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.
In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.
Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders
Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:
- Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
- Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
- Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
- Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
- Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.
In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.
How do manufacturers ensure the quality and compatibility of hydraulic cylinders?
Manufacturers employ various measures to ensure the quality and compatibility of hydraulic cylinders, ensuring that they meet industry standards, performance requirements, and the specific needs of their customers. Here’s a detailed explanation of the methods and practices used by manufacturers to ensure the quality and compatibility of hydraulic cylinders:
1. Design and Engineering:
– Manufacturers employ skilled engineers and designers who have expertise in hydraulic systems and cylinder design. They use advanced design software and tools to create hydraulic cylinders that meet the desired specifications and performance requirements. Through careful analysis and simulation, manufacturers can ensure that the cylinders are designed to function optimally and provide the necessary force, stroke length, and reliability.
2. Material Selection:
– High-quality materials are crucial for the durability, performance, and compatibility of hydraulic cylinders. Manufacturers carefully select materials such as steel or other alloys based on their strength, corrosion resistance, and suitability for hydraulic applications. They source materials from reputable suppliers and perform quality checks to ensure that the materials meet the required standards and specifications.
3. Quality Control:
– Manufacturers implement robust quality control processes throughout the production of hydraulic cylinders. This includes rigorous inspections and tests at various stages of manufacturing, from raw material inspection to final assembly. Quality control personnel perform dimensional checks, surface finish inspections, and functional tests to verify that the cylinders meet the specified tolerances, performance criteria, and compatibility requirements.
4. Testing and Validation:
– Hydraulic cylinders undergo testing and validation procedures to ensure their performance, reliability, and compatibility. Manufacturers conduct various tests, such as pressure testing, leakage testing, load testing, and endurance testing. These tests simulate real-world operating conditions and verify that the cylinders can withstand the expected loads, pressures, and environmental factors. Additionally, manufacturers may perform compatibility testing to ensure that the cylinders can integrate seamlessly with other hydraulic system components.
5. Compliance with Standards:
– Manufacturers adhere to industry standards and regulations to ensure the quality and compatibility of hydraulic cylinders. They follow standards such as ISO 9001 for quality management systems and ISO 6020/2 or ISO 6022 for hydraulic cylinders. Compliance with these standards ensures that the manufacturing processes, quality control measures, and product performance meet internationally recognized benchmarks.
6. Certification and Accreditation:
– Manufacturers may obtain certifications and accreditations from recognized organizations to demonstrate their commitment to quality and compatibility. Certifications such as ISO certifications or third-party certifications provide assurance to customers that the hydraulic cylinders have undergone rigorous evaluations and meet specific quality and compatibility standards.
7. Customer Collaboration:
– Manufacturers actively engage with customers to understand their specific requirements and ensure compatibility. They work closely with customers to gather application-specific details, such as operating conditions, load requirements, and environmental factors. This collaborative approach allows manufacturers to customize hydraulic cylinders and provide solutions that are perfectly matched to the customer’s needs, ensuring compatibility and optimal performance.
8. Continuous Improvement:
– Manufacturers are committed to continuous improvement in their processes and products. They invest in research and development to incorporate the latest technologies, materials, and manufacturing techniques. By staying updated with industry advancements, manufacturers can enhance the quality, performance, and compatibility of their hydraulic cylinders over time.
By implementing effective design and engineering practices, selecting high-quality materials, conducting rigorous quality control, testing and validation procedures, complying with industry standards, obtaining certifications, collaborating with customers, and embracing continuous improvement, manufacturers ensure the quality and compatibility of hydraulic cylinders. These measures help to deliver reliable, high-performance cylinders that meet the diverse needs of industries and applications.
editor by Dream 2024-04-30
China OEM Square Hydraulic Cylinder Thin Cylinder Standard Type Rod Cylinder vacuum pump oil near me
Product Description
Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.
Q2: How to make payment?
A2: Paypal, Western Union, Money Gram or T/T transfer
Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.
Q4: What is the packing method?
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.
Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.
Q6: What is the warranty
A6: 12 months against B/L date
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 60/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders handle the challenges of minimizing friction and wear?
Hydraulic cylinders employ several mechanisms and techniques to effectively minimize friction and wear, ensuring optimal performance and longevity. Minimizing friction and wear is crucial for hydraulic cylinders as it helps to maintain efficiency, reduce energy consumption, and prevent premature failure. Here’s a detailed explanation of how hydraulic cylinders handle the challenges of minimizing friction and wear:
1. Lubrication:
– Proper lubrication is essential for minimizing friction and wear in hydraulic cylinders. Lubricating fluids, such as hydraulic oils, are used to create a thin film between moving surfaces, reducing direct metal-to-metal contact. This lubricating film acts as a protective barrier, reducing friction and preventing wear. Regular maintenance practices include monitoring and maintaining the appropriate lubricant levels to ensure optimal lubrication and minimize frictional losses.
2. Surface Finishes:
– The surface finishes of components in hydraulic cylinders play a crucial role in minimizing friction and wear. Smoother surface finishes, achieved through precision machining, grinding, or the application of specialized coatings, reduce surface roughness and frictional resistance. By minimizing surface irregularities, the risk of wear and friction-induced damage is significantly reduced, resulting in improved efficiency and extended component life.
3. High-Quality Sealing Systems:
– Well-designed and high-quality sealing systems are crucial for minimizing friction and wear in hydraulic cylinders. Seals prevent fluid leakage and contamination while maintaining proper lubrication. Advanced sealing materials, such as polyurethane or composite materials, offer excellent wear resistance and low friction characteristics. Optimal seal design and proper installation ensure effective sealing, minimizing friction and wear between the piston and cylinder bore.
4. Proper Alignment and Clearances:
– Hydraulic cylinders must be properly aligned and have appropriate clearances to minimize friction and wear. Misalignment or excessive clearances can result in increased friction and uneven wear, leading to premature failure. Proper installation, alignment, and maintenance practices, including regular inspection and adjustment of clearances, help ensure smooth and even movement of the piston within the cylinder, reducing friction and wear.
5. Filtration and Contamination Control:
– Effective filtration and contamination control are essential for minimizing friction and wear in hydraulic cylinders. Contaminants, such as particles or moisture, can act as abrasive agents, accelerating wear and increasing friction. By implementing robust filtration systems and proper maintenance practices, hydraulic systems can prevent the ingress of contaminants, ensuring clean and properly lubricated components. Clean hydraulic fluids help minimize wear and friction, contributing to improved performance and longevity.
6. Material Selection:
– The selection of appropriate materials for hydraulic cylinder components is crucial in minimizing friction and wear. Components subject to high frictional forces, such as pistons and cylinder bores, can be made from materials with excellent wear resistance, such as hardened steel or composite materials. Additionally, selecting materials with low coefficients of friction helps reduce frictional losses. Proper material selection ensures durability and minimized wear in critical components of hydraulic cylinders.
7. Maintenance and Regular Inspection:
– Regular maintenance and inspection practices are vital for identifying and addressing potential issues that could lead to increased friction and wear in hydraulic cylinders. Scheduled maintenance includes lubrication checks, seal inspections, and monitoring of clearances. By promptly detecting and rectifying any signs of wear or misalignment, hydraulic cylinders can be kept in optimal condition, minimizing friction and wear throughout their operational lifespan.
In summary, hydraulic cylinders employ various strategies to handle the challenges of minimizing friction and wear. These include proper lubrication, employing suitable surface finishes, utilizing high-quality sealing systems, ensuring proper alignment and clearances, implementing effective filtration and contamination control measures, selecting appropriate materials, and conducting regular maintenance and inspections. By implementing these practices, hydraulic cylinders can minimize friction and wear, ensuring smooth and efficient operation while extending the overall lifespan of the system.
Handling the Challenges of Minimizing Fluid Leaks and Contamination in Hydraulic Cylinders
Hydraulic cylinders face challenges when it comes to minimizing fluid leaks and contamination, as these issues can impact the performance, reliability, and lifespan of the system. However, there are several measures and design considerations that help address these challenges effectively. Let’s explore how hydraulic cylinders handle the challenges of minimizing fluid leaks and contamination:
- Sealing Systems: Hydraulic cylinders employ advanced sealing systems to prevent fluid leaks. These systems typically include various types of seals, such as piston seals, rod seals, and wiper seals. The seals are designed to create a tight and reliable barrier between the moving components of the cylinder and the external environment, minimizing the risk of fluid leakage.
- Seal Material Selection: The choice of seal materials is crucial in minimizing fluid leaks and contamination. Hydraulic cylinder manufacturers carefully select seal materials that are compatible with the hydraulic fluid used and resistant to wear, abrasion, and chemical degradation. This ensures the longevity and effectiveness of the seals, reducing the likelihood of leaks or premature seal failure.
- Proper Installation and Maintenance: Ensuring proper installation and regular maintenance of hydraulic cylinders is essential for minimizing fluid leaks and contamination. During installation, attention should be given to proper alignment, torqueing of bolts, and adherence to recommended procedures. Regular maintenance includes inspecting seals, replacing worn-out components, and addressing any signs of leakage promptly. Proper maintenance practices help identify and rectify issues before they escalate and cause significant problems.
- Contamination Control: Hydraulic cylinders incorporate measures to control contamination and maintain fluid cleanliness. This includes the use of filtration systems, such as in-line filters, to remove particles and contaminants from the hydraulic fluid. Additionally, hydraulic reservoirs often have breathers and desiccant filters to prevent moisture and airborne contaminants from entering the system. By controlling contamination, hydraulic cylinders minimize the risk of damage to internal components and maintain optimal system performance.
- Environmental Protection: Hydraulic cylinders may be equipped with protective features to safeguard against external contaminants. For example, bellows or protective boots can be installed to shield the rod and seals from debris, dirt, or moisture present in the operating environment. These protective measures help extend the life of the seals and enhance the overall reliability of the hydraulic cylinder.
In summary, hydraulic cylinders employ sealing systems, appropriate seal materials, proper installation and maintenance practices, contamination control measures, and environmental protection features to handle the challenges of minimizing fluid leaks and contamination. By implementing these measures, manufacturers can ensure reliable and long-lasting hydraulic cylinder performance, minimize the risk of fluid leakage, and maintain the cleanliness of the hydraulic system.
How do hydraulic cylinders accommodate variations in stroke length and force requirements?
Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here’s a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:
1. Cylinder Size and Design:
– Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder’s diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.
2. Piston and Rod Configurations:
– Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.
3. Hydraulic Pressure and Flow:
– The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.
4. Customization and Tailoring:
– Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.
5. Multiple Cylinders and Synchronization:
– In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.
6. Load-Sensing and Pressure Control:
– Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application’s needs.
7. Safety Considerations:
– When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.
By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.
editor by Dream 2024-04-30
China manufacturer Custom Made Double Acting Welded Durable Telescopic Hydraulic Cylinder for Sale vacuum pump oil near me
Product Description
About Us
Established in 1988, HangZhou LD Machinery Co, LTD. (hereinafter referred to “LD”) is a leading manufacturer specializing in the design, research, development, manufacture and marketing in the hydraulic industry. Being one of major suppliers of customized components and cylinders for manufacturers spreaded all over the world, the company is committed to offer high quality products with competitive prices and excellent service worldwide.
Headquartered in HangZhou City, ZHangZhoug Province, the company wholly owns a subsidiary production factory named “HangZhou YUEWEI Hydraulic Technology Co., Ltd”, which covers an area of more than 380,000 square meters, possesses abundant technical strength and sound production management system, superior machining production equipment, strict and effective quality control system, advanced and excellent inspection instruments.
More than 35 years experience in machining industry, with over 10 experienced technical engineers and 150 skilled workers, LD has a senior engineering technical team with special skills and rich experience in product design, casting, forging, and CNC machining, can handle special material, structure, defect and processing, meet the evolving needs, and provide optimal solution and real one-stop service to customers.
Hydraulic Cylinder Producing Process
Step1: Quality Control on Raw Material
We have our own lab in factory, inspect the raw material and do the test. For every batch of material we received, we will ask supplier provide their certificate, and then cut them to do the test again to see if the results match the certification. Also, every batch we received, we will cut them into pieces to check the air bubbles. Once they are all qualified, we will accept it, and all detail information will be recording in our ERP system. We will also pay lot of attention on the salt spray test for chrome rod. Every month, we will cut the material, put them into test machine to see if it reach the requirement. All the result will be recorded at our QC department. If customer need, we can provide it.
Step2: Quality Control on Machining
we start doing components machining from 1988 with 36 years experience now and insist doing 100% inspection. We spend lots of money, invest on auto robots and machines. Now half of the producing line is by robot so that we can ensure our quality be stable good. For every part of the cylinder, we do 3 times inspecting. Firstly, workers will do self inspection. Secondly, we have tour-hour inspection checking the products, 2 times in the morning and 2 times in the afternoon, make sure that every step is good. After the products are all completed, we will do 100% inspection. For thread, for the tolerance, everything, we need double check. Also, we have specific warehouse just for the measuring tools. Every inspector have their own measuring tool and we will check the measuring tools regularly to make sure they are all in good condition, so that the measuring results will be convincing.
Step3: Quality Control on Welding
We are qualified to AWS certification, which is very popular in North American market. First, for the visual test, we will make sure that every components are welded good, look beautiful. And the second, we need to check the penetration. We have more than 15 years experience, we do know what kind of designing angle can make the cylinder welding strong. Once we finish the first article, we will cut it and analyse the welding to see if it is fulfill the groove. And then do the radiographic testing to make sure there is no gap inside. What’s more, we will do the ultrasonic test to check the program for the robot. Now 80% of welding is doing by robot. Once the program confirmed, no 1 can change it unless the welding manager, and they only have 5% right.
Step4: Quality Control on Assembling
For assembling, we have some difference with others. The brand we uses for seals are all those famous brand like Aston, Parker, Hallite. The cylinder we give to our customer has 2 years warranty. For our company, we engrave our part number and manufacturing date for the quality warranty. So no matter for seals or any others, as long as they are parts of cylinder, if it is under 2 years, we will take responsibility for them. And we will do the test for every cylinder like for pressure after we finish assembling.
Step5: Quality Control on Painting
We have our half auto painting line. Right now, we can paint about 1500 cylinders per day, which is about 1 container. Before we do the painting, we will do the wash first and for every cylinder, we will test for hardness, thickness and adhesion to make sure the painting are all good, which will be recorded into OQC report, print out and stick on the box, ship to you with your products.
Step6: Hydraulic Cylinder Packing
For every cylinder, we have the stick to show the detail information like bore size, stroke and working pressure. And we will use individual plastic bag packing. If customer need, we can also use individual carton box packing. We will fasten 1 floor after 1 floor with plat, so customer can only cut what they need and other layer will still be fasten. Moreover, there will be plywood pallet or plywood box for customer choosing. We will also send the loading picture to customer after we ship them to make sure everything is well loaded in China.
Packing Reference
Order Process
Enterprise Features
FAQ
Q1. What is LD product’s quality assurance?
100% inspection for each product before shipping with inspection rereport for tracking.
Q2: How long is the warranty on LD products?
The warranty is 2 years for general products since the date of shipment.
Q3: How LD deal with the quality problem during warranty period?
1. LD will take the corresponding cost caused by customer local reparing.
2. LD will provide the product by free if the repair cost is higher than the product value, but the freight involved shall be borne by customer side.
Q4: How to ensure the order can be shipped on time?
LD will send the “production schedule” every week after receiving customers’ orders. If any delays, LD will inform customers 3 weeks in advance, so as to facilitate the customer to arrange the schedule.
Q5: Does LD offer delivery service?
Yes. LD has deep cooperation with logistics companies all over the world to provide customers with quick and convenient “Door-to-Door services”,including sea, air and express.
Q6: How LD control the product quality?
1. Raw materials: We will test the material of each batch of raw materials we receive, and the piston rod will be tested with salt spray. This is to ensure that the material of our products meets the requirements at the beginning.
2. Processing: We have the leading machining equipment, and obtained ISO9001 certification.
3. Welding: Our factory is equipped with welding robots, and has obtained the AWS certification.
4. Assembly pressure test: 100% testing with OQC report for cHangZhou. The seals we use are: Hallite, Aston and Gapi
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 299/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can telescopic cylinders be repaired or maintained when necessary?
Yes, telescopic cylinders can be repaired and maintained when necessary. Here’s a detailed explanation:
Repairability:
Telescopic cylinders are designed with repairability in mind. The modular construction of telescopic cylinders allows for individual components or stages to be replaced or repaired as needed. If a specific part of the cylinder becomes damaged or worn out, it can be disassembled and repaired or replaced, minimizing downtime and cost compared to replacing the entire cylinder.
Maintenance:
Maintenance is essential to ensure the optimal performance and longevity of telescopic cylinders. Regular maintenance practices may include:
- Inspection: Periodic visual inspections to check for any signs of damage, wear, or leakage.
- Lubrication: Applying lubricants to the moving parts of the cylinder to reduce friction and extend component life.
- Cleaning: Removing dirt, debris, and contaminants that may affect the cylinder’s operation.
- Seal replacement: Replacing worn or damaged seals to maintain proper sealing and prevent fluid leakage.
- Pressure testing: Conducting pressure tests to ensure the cylinder’s integrity and identify any potential issues.
- Alignment and adjustment: Verifying proper alignment and making necessary adjustments to ensure smooth operation and prevent excessive wear.
Depending on the specific application and operating conditions, maintenance intervals and procedures may vary. It’s important to follow the manufacturer’s maintenance recommendations and guidelines for the telescopic cylinder to ensure effective maintenance practices.
Professional expertise:
Repairing and maintaining telescopic cylinders often require professional expertise. It is recommended to engage qualified technicians or service personnel with experience in hydraulic systems and telescopic cylinder repairs. They have the knowledge and tools necessary to accurately diagnose issues, perform repairs, and conduct maintenance tasks in a safe and efficient manner.
Manufacturer support:
Manufacturers of telescopic cylinders typically provide support for repair and maintenance. They may offer technical documentation, repair manuals, and access to replacement parts to facilitate the repair process. Consulting the manufacturer’s resources and seeking their assistance can ensure that repairs and maintenance are carried out correctly and in accordance with the cylinder’s specifications.
By implementing proper repair and maintenance practices, telescopic cylinders can be kept in good working condition, extending their service life and maintaining reliable performance.
It’s important to note that repair and maintenance should be performed by qualified individuals and comply with relevant safety guidelines and industry standards.
Can telescopic cylinders be used in manufacturing machinery for material processing?
Yes, telescopic cylinders are commonly used in manufacturing machinery for material processing tasks. Here’s a detailed explanation:
Material handling and manipulation:
Telescopic cylinders are utilized in manufacturing machinery to handle and manipulate materials during the processing stages. They enable lifting, lowering, pushing, or pulling of components, parts, or raw materials, facilitating various manufacturing operations such as cutting, bending, shaping, or assembly.
Positioning and alignment:
Telescopic cylinders contribute to precise positioning and alignment of materials in manufacturing machinery. The controlled extension and retraction of the cylinders allow operators to align workpieces accurately, ensuring consistent quality, dimensional accuracy, and proper fit during material processing.
Adjustable working height:
In manufacturing machinery, telescopic cylinders provide the advantage of adjustable working height. By extending or retracting the cylinders, the height of the work surface or processing area can be modified to accommodate different material sizes or operator preferences. This flexibility enhances ergonomics and facilitates efficient material processing.
Modular design for customization:
Telescopic cylinders feature a modular design that allows for customization according to specific manufacturing requirements. The number of stages or sections can be adjusted to achieve the desired extended length and capacity of the cylinder. This modularity enables telescopic cylinders to be tailored to the dimensions and processing needs of different manufacturing machinery.
Force generation and control:
Telescopic cylinders generate the necessary force to perform material processing tasks. The hydraulic control system regulates the extension and retraction of the cylinders, allowing operators to control the force applied during cutting, bending, or other processing operations. This force control ensures precise and consistent material processing while minimizing the risk of damage or deformation.
Space optimization:
Telescopic cylinders contribute to space optimization in manufacturing machinery. Their compact design allows for efficient utilization of available space, especially in equipment with limited footprint. The telescopic nature of the cylinders enables them to retract when not in use, minimizing the space occupied and allowing for better overall layout and arrangement of the machinery.
Advantages of telescopic cylinders in manufacturing machinery:
Telescopic cylinders offer several advantages in material processing applications within manufacturing machinery:
- Material handling and manipulation capabilities
- Precise positioning and alignment of materials
- Adjustable working height for versatility
- Modular design for customization
- Force generation and control for consistent processing
- Space optimization in compact machinery
Overall, telescopic cylinders are widely used in manufacturing machinery for material processing tasks, providing material handling, positioning, and force control capabilities. Their flexibility, modularity, and precise control contribute to efficient and accurate material processing operations in manufacturing.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in manufacturing machinery.
How does a telescopic cylinder differ from standard hydraulic cylinders?
A telescopic cylinder differs from standard hydraulic cylinders in several ways. Here’s a detailed explanation:
A telescopic cylinder, also known as a multistage cylinder or a sleeve cylinder, is specifically designed to provide an extended stroke length while maintaining a compact retracted length. In contrast, a standard hydraulic cylinder typically consists of a single-stage rod and barrel design. Here are the key differences between a telescopic cylinder and a standard hydraulic cylinder:
- Design and Structure: The most significant difference lies in the design and structure. A standard hydraulic cylinder has a single-stage design, meaning it consists of a single rod and barrel. On the other hand, a telescopic cylinder features multiple stages or sleeves nested inside one another. This nested structure allows for a longer stroke length while keeping the retracted length compact.
- Stroke Length: The stroke length of a telescopic cylinder can be significantly longer compared to a standard hydraulic cylinder. The ability to extend in multiple stages allows for a greater overall stroke length, making telescopic cylinders suitable for applications that require extended reach or height adjustment.
- Retracted Length: While a standard hydraulic cylinder has a fixed retracted length equal to its stroke length, a telescopic cylinder offers a compact retracted length. The nested design enables the stages to retract inside one another, reducing the overall length of the cylinder when not in use. This compact retracted length is advantageous in applications with space constraints.
- Load Capacity: Telescopic cylinders are designed to handle substantial loads while maintaining stability. The nested structure provides increased load-bearing capacity compared to standard hydraulic cylinders. The stages distribute the load evenly, ensuring efficient load transfer throughout the extended stroke.
- Complexity and Maintenance: Telescopic cylinders are generally more complex in design compared to standard hydraulic cylinders. They require precise alignment of the stages and may include additional components such as locking mechanisms or guiding systems. This complexity can affect maintenance requirements and may require specialized inspection and servicing procedures.
- Application: Telescopic cylinders are commonly used in applications that require extended reach or height adjustment, such as cranes, dump trucks, aerial platforms, and material handling equipment. Standard hydraulic cylinders, on the other hand, are versatile and widely used in various applications, including industrial machinery, construction equipment, and agricultural machinery.
Despite these differences, both telescopic cylinders and standard hydraulic cylinders are essential components in hydraulic systems. They both rely on hydraulic fluid to generate force and provide linear motion. The selection of the cylinder type depends on the specific requirements of the application, including stroke length, retracted length, load capacity, and available space.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and maintenance of the hydraulic cylinder based on the specific application requirements.
editor by Dream 2024-04-30
China wholesaler China Hydraulic Cylinder Manufacturer CZPT Brand Telescopic Cylinder with CE for Truck vacuum pump design
Product Description
Product description:
Junfu is famous brand in front-end cylinders, offering an extensive catalogue from 5 to 100 tons with bespoke solutions. Designed for rear-end tippers and tippers trailers, CHINAMFG brand front-end telescopic cylinders are known for their durability, reliability in all conditions and value for money. We believe in delivering a solution that can rapidly and successfully meet your requirements in demanding industries such as transportation, construction and mining. With high payload and longer service intervals for increased operating time, CHINAMFG brand front-end cylinders are also environmentally friendly solutions with lower oil & fuel consumption.
FC telescopic front-end cylinders are primarily designed for straight headboard dump trucks with a capacity range of over 100 tons tipping weight. Our trunnion type FC cylinder is lightweight, strong, maintenance free and offers the most added stability to the tipper. The CHINAMFG brand FC tipping cylinders have earned reputation for their reliability and value for money over many years.
Designed for Dump Truck applications, FC series cylinder with 3-7 stages is capable of lifting more weight which in return allows trucks to be equipped with smaller cylinders reducing space and saving weight. This CHINAMFG series cylinder is mostly used in combination with a Straight Headboard Type and Trunnion Type Body Connection.
Workshop with advanced equipment:
Exhibition:
Certificates: ISO9001, IATF 16949:2016, CE,etc.
FAQ:
Q1: How about your cylinders compared with HYVA cylinder ?
Our cylinders can replace HYVA cylinder well, with same technical details and mounting sizes
Q2: What’s your cylinder’s advantages ?
The cylinders are manufactured by advanced equipments and made under strictly quality control processing.
The steel is quenched and tempered 27SiMn steel and all raw materials are good quality from world famous companies.
Competitive price!
Q3: When your company be established ?
Our company be established in 2002, professional manufacturer of hydraulic cylinders more than 20 years.
We had passed IATF 16949:2016 Quality control system, ISO9001, CE,etc.
Q4: How about the delivery time ?
7-15 days approximately.
Q5: How about the cylinder’s quality gurantee ?
One year.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001, IATF 16949:2016, SGS |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Switching Type |
Customization: |
Available
|
|
---|
Can telescopic cylinders be used in material handling equipment for reach and lift?
Yes, telescopic cylinders are commonly used in material handling equipment to provide reach and lift capabilities. Here’s a detailed explanation:
Role in material handling:
Telescopic cylinders play a crucial role in material handling equipment by extending the reach and enabling the lifting of heavy loads. These cylinders are typically employed in equipment such as forklifts, telehandlers, reach stackers, and aerial work platforms.
Reach extension:
Telescopic cylinders allow material handling equipment to extend their reach by extending the boom or lifting arm. The nested design of the cylinder, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access materials at greater heights or reach into confined spaces.
Lifting capacity:
Telescopic cylinders provide the necessary lifting force to handle heavy loads in material handling equipment. The cylinder’s bore size, rod diameter, and overall construction are engineered to withstand the forces exerted during lifting and ensure safe and efficient load handling.
Precision control:
Telescopic cylinders offer precise control over the extension and retraction of the lifting arm or boom. The hydraulic control system regulates the flow of hydraulic fluid to each stage of the cylinder, allowing for smooth and controlled movement. This precise control is essential in material handling applications to ensure accurate positioning of loads and safe operation.
Compactness and flexibility:
Telescopic cylinders contribute to the compactness and flexibility of material handling equipment. By retracting the cylinder stages, the overall length of the equipment can be minimized, making it easier to maneuver in tight spaces. Additionally, the ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Variety of material handling equipment:
Telescopic cylinders are utilized in a wide range of material handling equipment to enhance reach and lift capabilities. Forklifts, for example, often incorporate telescopic cylinders to extend the forks and reach into pallet racks. Telehandlers and reach stackers utilize telescopic cylinders to extend the lifting arm and reach high stacking heights. Aerial work platforms utilize telescopic cylinders to extend the platform and provide elevated access for maintenance or construction tasks.
Advantages of telescopic cylinders in material handling:
Telescopic cylinders offer several advantages in material handling equipment:
- Increased reach: Telescopic cylinders allow operators to extend the equipment’s reach, enabling access to materials at greater heights or in confined spaces.
- Enhanced lifting capacity: Telescopic cylinders provide the necessary lifting force to handle heavy loads, expanding the equipment’s lifting capabilities.
- Precision and control: The hydraulic control system of telescopic cylinders allows for precise and controlled movement, ensuring accurate load positioning and safe operation.
- Compactness and flexibility: By retracting the cylinder stages, material handling equipment can be more compact and maneuverable, adapting to different working environments.
Overall, telescopic cylinders are widely used in material handling equipment to extend reach and enhance lifting capabilities. Their precise control, compactness, and flexibility make them essential components in various material handling applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, maintenance requirements, and safety considerations.
How do telescopic cylinders handle variations in hydraulic pressure and flow rate?
Telescopic cylinders are designed to handle variations in hydraulic pressure and flow rate effectively. Here’s a detailed explanation:
Hydraulic pressure control:
Telescopic cylinders are equipped with hydraulic systems that allow for precise control of hydraulic pressure. The hydraulic pressure is regulated by a pump that supplies pressurized hydraulic fluid to the cylinder. The pressure can be adjusted according to the specific requirements of the application.
Pressure relief valves:
To handle variations in hydraulic pressure, telescopic cylinders often incorporate pressure relief valves. These valves are designed to limit the maximum pressure within the cylinder to prevent damage or failure. When the pressure exceeds the set limit, the relief valve opens, allowing excess fluid to bypass and relieve the pressure. This ensures the safety and integrity of the telescopic cylinder and the hydraulic system.
Flow control:
Telescopic cylinders also handle variations in flow rate through the hydraulic control system. The flow rate of hydraulic fluid into and out of the cylinder determines the speed of extension and retraction. Flow control valves, such as flow restrictors or flow control valves, are commonly employed to regulate the flow rate.
Flow restrictors:
Flow restrictors are used to limit the flow rate of hydraulic fluid entering or leaving the telescopic cylinder. By restricting the flow, the speed of extension or retraction can be controlled. This allows for precise and gradual movement, preventing abrupt or uncontrolled motion.
Flow control valves:
Flow control valves are designed to provide adjustable flow rates by regulating the opening or closing of hydraulic passages. These valves allow operators to control the speed of extension and retraction of the telescopic cylinder. By adjusting the flow control valves, variations in flow rate can be accommodated to suit specific operational requirements.
Sequencing valves:
In some applications, telescopic cylinders may require a specific sequence of extension and retraction. Sequencing valves are used to control the order in which different stages of the telescopic cylinder extend or retract. These valves ensure proper synchronization of the cylinder stages and prevent uneven or unbalanced movement.
Overall, telescopic cylinders employ various hydraulic components and control mechanisms to handle variations in hydraulic pressure and flow rate. Pressure relief valves protect against excessive pressure, flow restrictors and flow control valves regulate the flow rate, and sequencing valves ensure proper sequencing of cylinder stages. These features allow telescopic cylinders to operate safely, precisely, and efficiently under different hydraulic conditions.
It’s important to consult the manufacturer’s documentation and guidelines for specific information on the hydraulic system and control mechanisms of telescopic cylinders, as well as recommended maintenance and safety practices.
What are the benefits of using telescopic cylinders for long-reach tasks?
Telescopic cylinders offer several benefits when it comes to long-reach tasks. Here’s a detailed explanation:
Extended reach:
One of the primary advantages of telescopic cylinders is their ability to provide extended reach. By utilizing a nested structure with multiple stages, telescopic cylinders can achieve significantly longer stroke lengths compared to other types of cylinders. This extended reach is beneficial for tasks that require accessing or manipulating objects or materials at a distance.
Compact retracted length:
Despite their extended reach, telescopic cylinders have a relatively compact retracted length. This is advantageous in situations where space is limited or when a shorter cylinder length is preferred. The compact retracted length enables telescopic cylinders to be installed in confined areas or integrated into equipment without excessive protrusion.
Flexible and adjustable:
Telescopic cylinders offer flexibility and adjustability, allowing for fine-tuning of the stroke length, force, and speed. This adjustability is particularly useful in long-reach tasks where precise control and positioning are required. The hydraulic control system of telescopic cylinders enables operators to optimize the cylinder’s performance according to the specific task and operating conditions.
High force capabilities:
Telescopic cylinders are designed to handle heavy loads and can generate substantial force. This makes them suitable for long-reach tasks that involve lifting, pushing, pulling, or manipulating objects at a distance. The high force capabilities of telescopic cylinders ensure that the required power is available to perform the task effectively.
Enhanced stability:
Telescopic cylinders are engineered to provide stability during long-reach tasks. The nested structure and hydraulic control system work together to ensure synchronized and controlled extension and retraction of the stages. This stability is crucial for maintaining precise positioning, minimizing oscillations or vibrations, and preventing potential hazards or accidents.
Versatility:
Telescopic cylinders find applications in various industries and tasks that involve long-reach requirements. They are commonly used in construction equipment, material handling machinery, cranes, booms, and many other applications where extended reach is necessary.
Overall, the benefits of using telescopic cylinders for long-reach tasks include extended reach, compact retracted length, flexibility, high force capabilities, enhanced stability, and versatility. These advantages make telescopic cylinders a valuable choice for tasks that require reaching or manipulating objects at a distance.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and operation of telescopic cylinders based on the specific long-reach task requirements.
editor by Dream 2024-04-30