Product Description
Product Description
Bore of cylinder’s first stage | Stroke | Upper mouting | Upper mouting | Mounting dimension | Working pressure | ||
Diameter of the hole | Deep | Diameter of the hole | Deep | ||||
5 | 84.00 | 1.63 | 1.50 | 2.00 | 7.00 | 41.09 | 2500 |
6 | 120.06 | 2.00 | 2.00 | 2.00 | 7.00 | 52.62 | 2500 |
7 | 120.00 | 2.00 | 2.00 | 2.00 | 8.25 | 53.12 | 2500 |
8.125 | 234.00 | 2.00 | 2.00 | 2.00 | 9.50 | 64.62 | 2500 |
9.375 | 235.00 | 2.00 | 2.00 | 2.00 | 10.88 | 65.44 | 2500 |
L2 | L3 | L4 | L5 | L6 | ØA | Fitting | Workable container length | Rear suspension length | Lift angle | Lift capacity | Oil tank volume |
65 | 360 | 60 | 325 | 1585 | Ø60 | G1 | 4700-5300 | 800 | 47-52° | 43 | 80 |
65 | 360 | 60 | 325 | 1270 | Ø60 | G1 | 4700-5300 | 800 | 47-52° | 31 | 80 |
65 | 360 | 60 | 325 | 1390 | Ø60 | G1 | 5300-6000 | 800 | 47-52° | 36 | 80 |
65 | 360 | 60 | 325 | 1510 | Ø60 | G1 | 5800-6500 | 800 | 47-52° | 36 | 80 |
65 | 360 | 60 | 325 | 1385 | Ø60 | G1 | 5300-5800 | 800 | 47-52° | 53 | 80 |
65 | 360 | 60 | 325 | 1505 | Ø60 | G1 | 5800-6500 | 800 | 47-52° | 53 | 100 |
65 | 360 | 60 | 325 | 1580 | Ø60 | G1 | 6200-6800 | 800 | 47-52° | 58 | 100 |
65 | 360 | 60 | 325 | 1655 | Ø60 | G1 | 6600-7200 | 800 | 47-52° | 58 | 100 |
65 | 360 | 60 | 325 | 1125 | Ø60 | G1 | 5000-5500 | 800 | 47-52° | 46 | 80 |
65 | 360 | 60 | 325 | 1165 | Ø60 | G1 | 5300-6000 | 800 | 47-52° | 46 | 80 |
65 | 360 | 60 | 325 | 1265 | Ø60 | G1 | 5800-6500 | 800 | 47-52° | 49 | 80 |
65 | 360 | 60 | 325 | 1340 | Ø60 | G1 | 6200-6800 | 800 | 47-52° | 49 | 80 |
65 | 360 | 60 | 325 | 1385 | Ø60 | G1 | 6600-7200 | 800 | 47-52° | 49 | 80 |
65 | 360 | 65 | 325 | 1455 | Ø60 | G1 | 5600-6300 | 800 | 47-52° | 66 | 120 |
65 | 360 | 65 | 325 | 1505 | Ø60 | G1 | 5800-6500 | 800 | 47-52° | 66 | 120 |
65 | 360 | 65 | 325 | 1580 | Ø60 | G1 | 6200-6800 | 800 | 47-52° | 70 | 120 |
65 | 360 | 65 | 325 | 1655 | Ø60 | G1 | 6600-7200 | 800 | 47-52° | 70 | 120 |
65 | 360 | 65 | 325 | 1750 | Ø60 | G1 | 7200-8000 | 1000 | 47-52° | 70 | 135 |
65 | 360 | 65 | 325 | 1270 | Ø60 | G1 | 7200-8000 | 1000 | 47-52° | 49 | 120 |
65 | 360 | 65 | 325 | 1675 | Ø65 | G1 | 6600-7200 | 800 | 47-52° | 92 | 165 |
65 | 360 | 65 | 325 | 1770 | Ø65 | G1 | 7200-8000 | 1000 | 47-52° | 96 | 165 |
65 | 360 | 65 | 325 | 1870 | Ø65 | G1 | 8000-8500 | 1000 | 47-52° | 96 | 185 |
65 | 360 | 65 | 325 | 1770 | Ø65 | G1 | 8700-9500 | 1000 | 47-52° | 88 | 185 |
Company Profile
Certifications
Packaging & Shipping
FAQ
Q1: Can your cylinders with HYVA ones ?
Yes, our cylinders can replace HYVA ones well, with same technical details and mounting sizes
Q2: What’s your cylinder’s advantages ?
The cylinders are made under strictly quality control processing.
All the raw materials and seals we used are all from world famous companies.
Cost effective
Q3: When your company be established ?
Our company be established in 1996, and we are professional for hydraulic cylinders for more than 25 years.
And we had passed IATF 16949:2016 Quality control system.
Q4: How about the delivery time ?
For samples about 20 days. And 15 to 30 days about mass orders.
Q5: How about the cylinder’s quality gurantee ?
We have 1 year quality grantee of the cylinders.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001, IATF 16949:2016 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do telescopic cylinders handle variations in load capacity and weight?
Telescopic cylinders are designed to handle variations in load capacity and weight effectively. Here’s a detailed explanation:
Load-specific design:
Telescopic cylinders are engineered with load-specific design considerations to accommodate variations in load capacity and weight. Manufacturers take into account factors such as the maximum expected load, the range of anticipated loads, and the required safety factors. The cylinder’s components, materials, and dimensions are selected and configured accordingly to provide the necessary strength and stability.
Multiple stages:
The nested structure of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for adaptability to different loads. Each stage can handle a specific portion of the load, and the collective capacity of all stages determines the overall load capacity of the cylinder. By adding or removing stages, telescopic cylinders can be customized to suit different load requirements, providing flexibility in handling variations in weight.
Hydraulic system control:
The hydraulic control system of telescopic cylinders plays a vital role in managing variations in load capacity. By regulating the flow of hydraulic fluid to each stage, operators can control the extension and retraction force applied to the cylinder. This control allows for adjustments based on the specific load and weight requirements, ensuring the cylinder operates within its safe working limits.
Pressure relief and overload protection:
Telescopic cylinders are often equipped with pressure relief valves and overload protection mechanisms to safeguard against excessive loads. Pressure relief valves help prevent over-pressurization of the hydraulic system by diverting excess fluid flow, protecting the cylinder from potential damage. Overload protection mechanisms, such as overload sensors or mechanical stops, are designed to activate and halt the cylinder’s movement if the load exceeds the safe operating limits.
Load distribution and stability:
Telescopic cylinders contribute to load distribution and stability. The nested design distributes the load across multiple stages, reducing stress on individual components and enhancing overall stability. Proper weight distribution on the machinery or equipment, as well as secure attachment of the load, further contribute to maintaining stability and ensuring safe operation.
It’s important to note that while telescopic cylinders can handle variations in load capacity and weight, it is crucial to operate within the specified load limits and follow the manufacturer’s guidelines. Exceeding the recommended load capacity can compromise the safety, performance, and longevity of the telescopic cylinder and the machinery it is installed on.
Consulting the manufacturer’s documentation, engineering specifications, and relevant industry standards is essential for understanding and adhering to the appropriate load capacity and weight guidelines when using telescopic cylinders.
Can telescopic cylinders be used in agricultural machinery for various tasks?
Yes, telescopic cylinders are widely used in agricultural machinery for various tasks. Here’s a detailed explanation:
Versatile applications:
Telescopic cylinders offer versatility and are suitable for a wide range of tasks in agricultural machinery. They are commonly employed in equipment such as tractors, harvesters, sprayers, loaders, and tillers.
Lifting and lowering:
Telescopic cylinders are utilized for lifting and lowering applications in agricultural machinery. They provide the necessary force to raise and lower attachments such as loader buckets, tillage implements, or harvest platforms. The telescopic cylinder’s design allows for efficient force transmission, enabling smooth and controlled movement.
Reach extension:
Telescopic cylinders are valuable for extending the reach of agricultural machinery. For example, in a harvester, telescopic cylinders can extend the reach of the harvesting arm, allowing operators to access crops in a broader area. This extension capability increases efficiency and productivity by reducing the need for repositioning the machinery frequently.
Adjustable working height:
Telescopic cylinders are employed in agricultural machinery to provide adjustable working heights. For instance, in sprayers or spreaders, telescopic cylinders can adjust the height of the booms or spreading mechanisms, allowing for precise application of fertilizers, pesticides, or seeds.
Folding and unfolding:
Telescopic cylinders are used to facilitate folding and unfolding actions in agricultural machinery. This is particularly useful for equipment that needs to be transported or stored in compact configurations. For example, telescopic cylinders can fold the wings of a tillage implement for easy transport on roads or through narrow gateways.
Stabilization and leveling:
Telescopic cylinders contribute to the stabilization and leveling of agricultural machinery. They are employed in tasks such as adjusting the height and angle of plows, cultivators, or balers to ensure proper ground engagement and uniform performance.
Advantages of telescopic cylinders in agricultural machinery:
Telescopic cylinders offer several advantages in agricultural machinery:
- Versatility: Telescopic cylinders can be used for various tasks, providing flexibility and adaptability in agricultural operations.
- Efficient force transmission: The telescopic design allows for direct and efficient force transmission, maximizing the equipment’s lifting and operational capabilities.
- Precise control: Telescopic cylinders enable precise control over movements, allowing for accurate positioning and improved productivity.
- Space optimization: Telescopic cylinders contribute to space optimization by enabling folding or compact configurations, facilitating transportation and storage of agricultural machinery.
Overall, telescopic cylinders are valuable components in agricultural machinery, offering versatility, efficient force transmission, precise control, and space optimization. They enhance the functionality and productivity of agricultural equipment across various tasks and applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in agricultural machinery.
What are the benefits of using telescopic cylinders for long-reach tasks?
Telescopic cylinders offer several benefits when it comes to long-reach tasks. Here’s a detailed explanation:
Extended reach:
One of the primary advantages of telescopic cylinders is their ability to provide extended reach. By utilizing a nested structure with multiple stages, telescopic cylinders can achieve significantly longer stroke lengths compared to other types of cylinders. This extended reach is beneficial for tasks that require accessing or manipulating objects or materials at a distance.
Compact retracted length:
Despite their extended reach, telescopic cylinders have a relatively compact retracted length. This is advantageous in situations where space is limited or when a shorter cylinder length is preferred. The compact retracted length enables telescopic cylinders to be installed in confined areas or integrated into equipment without excessive protrusion.
Flexible and adjustable:
Telescopic cylinders offer flexibility and adjustability, allowing for fine-tuning of the stroke length, force, and speed. This adjustability is particularly useful in long-reach tasks where precise control and positioning are required. The hydraulic control system of telescopic cylinders enables operators to optimize the cylinder’s performance according to the specific task and operating conditions.
High force capabilities:
Telescopic cylinders are designed to handle heavy loads and can generate substantial force. This makes them suitable for long-reach tasks that involve lifting, pushing, pulling, or manipulating objects at a distance. The high force capabilities of telescopic cylinders ensure that the required power is available to perform the task effectively.
Enhanced stability:
Telescopic cylinders are engineered to provide stability during long-reach tasks. The nested structure and hydraulic control system work together to ensure synchronized and controlled extension and retraction of the stages. This stability is crucial for maintaining precise positioning, minimizing oscillations or vibrations, and preventing potential hazards or accidents.
Versatility:
Telescopic cylinders find applications in various industries and tasks that involve long-reach requirements. They are commonly used in construction equipment, material handling machinery, cranes, booms, and many other applications where extended reach is necessary.
Overall, the benefits of using telescopic cylinders for long-reach tasks include extended reach, compact retracted length, flexibility, high force capabilities, enhanced stability, and versatility. These advantages make telescopic cylinders a valuable choice for tasks that require reaching or manipulating objects at a distance.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and operation of telescopic cylinders based on the specific long-reach task requirements.
editor by Dream 2024-04-29
China OEM China Factory Series High Quality Hydraulic Oil Cylinder with Favorable Price vacuum pump booster
Product Description
Cylinder Type: | Mill type, head bolted, base welded |
Structure: | Piston type |
Standard: | GB/T15622-1995 JB/T15715-2000 |
Bore diameter: | Up to 700mm |
Rod diameter: | Up to 500mm |
Stroke length: | Up to 10,000mm |
Piston rod material: | 20#,45#,40Cr, 27SiMn,30CrMo,35CrMo,42CrMo |
Rod surface treatment: | Hard chrome plated, chrome/nickel plated, ceramic coated |
Tube material: | 20#, 25#, 45#, 27SiMn,30CrMo,35CrMo,42CrMo |
Tube surface painting: | Colors as RAL, thickness according to request |
Mounting type: | Clevis, cross tube, flange, trunnion, tang, thread |
Design pressure: | Up to 40Mpa |
Seal kits type: | PARKER, MERKEL, HALLITE, NOK, TRELLEBORG |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001 |
---|---|
Pressure: | with or Without High and Low Pressure Switch |
Work Temperature: | Normal or Lower Temperature with Matched Sealing |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Switching or Regulated Type |
Samples: |
US$ 979/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?
Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:
1. Hydraulic Fluid and Pressure:
– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.
2. Piston and Cylinder Design:
– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.
3. Control Valves and Flow Control:
– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.
4. Cushioning and Damping:
– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.
5. Load Balancing:
– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.
6. Feedback and Control Systems:
– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.
7. Maintenance and Servicing:
– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.
In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.
Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating Loads
Hydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:
- Piston Design: The piston inside the hydraulic cylinder plays a crucial role in load control. It is typically equipped with seals and rings that prevent leakage of hydraulic fluid and ensure effective transfer of force. The piston design may incorporate features such as stepped or tandem pistons, which provide enhanced load-bearing capabilities and improved stability by distributing the load across multiple surfaces.
- Cylinder Cushioning: Hydraulic cylinders often incorporate cushioning mechanisms to minimize the impact and shock caused by fluctuating loads. Cushioning can be achieved through various methods, such as adjustable cushion screws, hydraulic cushioning valves, or elastomeric cushioning rings. These mechanisms slow down the piston’s movement near the end of the stroke, reducing the impact and preventing sudden stops that could lead to instability.
- Pressure Compensation: Fluctuating loads can result in pressure variations within the hydraulic system. To ensure stable performance, hydraulic cylinders are equipped with pressure compensation mechanisms. These mechanisms maintain a consistent pressure level in the system, regardless of load changes. Pressure compensation can be achieved through the use of pressure relief valves, compensating pistons, or pressure-compensated flow control valves.
- Flow Control: Hydraulic cylinders often incorporate flow control valves to regulate the speed of the cylinder’s movement. By controlling the flow rate of hydraulic fluid, the cylinder’s motion can be adjusted to match the changing load conditions. Flow control valves allow for smooth and controlled movement, preventing abrupt changes that could lead to instability.
- Feedback Systems: To ensure stable performance under fluctuating loads, hydraulic cylinders can be integrated with feedback systems. These systems provide real-time information on the cylinder’s position, velocity, and force. By continuously monitoring these parameters, the hydraulic system can make immediate adjustments to maintain stability and compensate for load fluctuations. Feedback systems can include position sensors, pressure sensors, or load sensors, depending on the specific application.
- Proper Sizing and Selection: Ensuring stable performance under fluctuating loads starts with proper sizing and selection of hydraulic cylinders. It is crucial to choose cylinders with appropriate bore size, rod diameter, and stroke length to match the anticipated load conditions. Oversized or undersized cylinders can lead to instability and reduced performance. Proper sizing also involves considering factors such as the required force, speed, and duty cycle of the application.
In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance.
What are the common signs of wear or leakage that indicate hydraulic cylinder issues?
Hydraulic cylinders are critical components in hydraulic systems, and wear or leakage can lead to performance issues and potential system failures. It is important to be aware of the common signs that indicate hydraulic cylinder problems. Here’s a detailed explanation of the common signs of wear or leakage that indicate hydraulic cylinder issues:
1. Fluid Leakage:
– Fluid leakage is one of the most obvious signs of hydraulic cylinder problems. If you notice hydraulic fluid leaking from the cylinder, it indicates a seal failure or damage to the cylinder. Leaking fluid may be visible around the rod, piston, or cylinder body. It is important to address fluid leakage promptly as it can lead to a loss of system efficiency, contamination of the surrounding environment, and potential damage to other system components.
2. Reduced Performance:
– Wear or internal damage to the hydraulic cylinder can result in reduced performance. You may notice a decrease in the cylinder’s force output, slower operation, or difficulty in extending or retracting the cylinder. Reduced performance can be indicative of worn seals, damaged piston or rod, internal leakage, or contamination within the cylinder. Any noticeable decrease in the cylinder’s performance should be inspected and addressed to prevent further damage or system inefficiencies.
3. Abnormal Noise or Vibrations:
– Unusual noise or vibrations during the operation of a hydraulic cylinder can indicate internal wear or damage. Excessive noise, knocking sounds, or vibrations that are not typical for the system may suggest problems such as worn bearings, misalignment, or loose internal components. These signs should be investigated to identify the source of the issue and take appropriate corrective measures.
4. Excessive Heat:
– Overheating of the hydraulic cylinder is another sign of potential issues. If the cylinder feels excessively hot to the touch during normal operation, it may indicate problems such as internal leakage, fluid contamination, or inadequate lubrication. Excessive heat can lead to accelerated wear, reduced efficiency, and overall system malfunctions. Monitoring the temperature of the hydraulic cylinder is important to detect and address potential problems.
5. External Damage:
– Physical damage to the hydraulic cylinder, such as dents, scratches, or bent rods, can contribute to wear and leakage issues. External damage can compromise the integrity of the cylinder, leading to fluid leakage, misalignment, or inefficient operation. Regular inspection of the cylinder’s external condition is essential to identify any visible signs of damage and take appropriate actions.
6. Seal Failure:
– Hydraulic cylinder seals are critical components that prevent fluid leakage and maintain system integrity. Signs of seal failure include fluid leakage, reduced performance, and increased friction during cylinder operation. Damaged or worn seals should be replaced promptly to prevent further deterioration of the cylinder’s performance and potential damage to other system components.
7. Contamination:
– Contamination within the hydraulic cylinder can cause wear, damage to seals, and overall system inefficiencies. Signs of contamination include the presence of foreign particles, debris, or sludge in the hydraulic fluid or visible damage to seals and other internal components. Regular fluid analysis and maintenance practices should be implemented to prevent contamination and address any signs of contamination promptly.
8. Irregular Seal Wear:
– Hydraulic cylinder seals can wear over time due to friction, pressure, and operating conditions. Irregular seal wear patterns, such as uneven wear or excessive wear in specific areas, may indicate misalignment or improper installation. Monitoring the condition of the seals during regular maintenance can help identify potential issues and prevent premature seal failure.
It is important to address these common signs of wear or leakage promptly to prevent further damage, ensure the optimal performance of hydraulic cylinders, and maintain the overall efficiency and reliability of the hydraulic system. Regular inspection, maintenance, and timely repairs or replacements of damaged components are key to mitigating hydraulic cylinder issues and maximizing system longevity.
editor by Dream 2024-04-26
China supplier Front Mounting Telescopic Dump Truck Hydraulic Hoist Cylinder for Tractor Trailer vacuum pump oil near me
Product Description
Single Acting Multi-stage Telescopic Hydraulic Cylinders For Trailer
Product Description
Eaton, parker, hercules, prince, cross type double acting hydraulic cylinder are used for Trailer, Agricultural Machinery, Garbage Truck, Landing Platform etc.
Tsingshi hydraulic Customers, MAN, JAC, VOLVO, SHACMAN, DAF, JMC, HUNO, CIMC, SINOTRUK, TATRA,BENS,XIHU (WEST LAKE) DIS.FENG, FOTON,etc.
NO | ITEM | single acting hydraulic cylinder DATA |
1 | Material | Carbon Steel, Alloy Steel, 27SiMn,45#,20#,etc |
2 | Honed tube | 40-300mm, Heat treatment, honing, rolling |
3 | Honed tube | 30-280mm, plated nickel or hard Chrome or ceramic |
4 | Seal kit | Parker, Merkel, Hallite, Kaden, etc |
5 | Coating | Sandblasting, primer paint, middle paint, finish paint, Color can paint according to customer demands. |
6 | Technology | single acting hydraulic cylinder |
7 | Mounting type | Pin-eye , flange, trunnion mount,ball mount, screw thread. FC, FE, FEE, FSE,TPIN |
8 | Working medium | Hydraulic Oil |
9 | Working pressure | 16-20Mpa hydraulic lift cylinder |
10 | Temperature range | -50°C to +100°C |
Detailed Photos
Company Profile
Tsingshi hydraulic is a hydraulic telescopic cylinder for dump tipper truck company which takes up with hydraulic design, R&D, manufacturer, sell and service hydraulic products-small piston double acting hydraulic lift ram oil cylinder.
-double acting hydraulic cylinder Certification ISO9001 TS16949, etc;
-mini double acting hydraulic cylinder Export to North America, South America, Australia, South Korea, Southeast Asia, South Africa, Europe, Middle East, etc;
-ODM&OEM small double acting hydraulic cylinder according to client’s requirements;
-Professional manufacturer& supplier of Hydraulic Cylinders over 30 years;
-The micro double acting hydraulic cylinder can be used for Dump Truck, Tipper Truck, Trailer, Agricultural Machinery, Garbage Truck,Landing Platform etc; We can produce the follow brand hydraulic cylinder. HYVA, BINOTTO, EDBRO, PENTA, MAILHOT, CUSTOM HOIST, MUNCIE, METARIS, HYDRAULEX GLOBAL, HYCO, PARKER, COMMERCIAL HYDRAULICS, MEILLER. WTJX, XT, JX, HCIC, ZX, SZ, SJ.
QUALITY GUARANTEE
HIGH QUALITITY GUARANTEE-double acting hydraulic cylinder
-7*24 service.
-Competitive price.
-Professional technical team.
-Perfect after-sales service system.
-ODM&OEM Hydraulic Cylinder according to customer needs.
-Strong Hydraulic Cylinder production capacity to ensure fast delivery.
-Guarantee Quality. Every process must be inspected, all products need be tested before leaving the factory.
<hydraulic cylinder Leak Test
<piston hydraulic cylinder Buffer Test
<hydraulic lift cylinder Reliability Test
<hydraulic ram cylinder Full Stroke Test
<hydraulic cylinder double acting Operation Test
<micro double acting hydraulic cylinder Pressure Tight Test
<small double acting hydraulic cylinder Load Efficiency Test
<double action hydraulic cylinder Start-up Pressure Test
<double acting hydraulic cylinder Testing the Effect of Limit
SALES AND SERVICE
PRODUCTS SERIES
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO/Ts16949 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do telescopic cylinders contribute to energy-efficient equipment operation?
Telescopic cylinders play a significant role in promoting energy-efficient equipment operation. Here’s a detailed explanation:
Reduced energy consumption:
Telescopic cylinders are designed to minimize energy consumption during equipment operation. The hydraulic system of telescopic cylinders allows for precise control over the extension and retraction of the cylinder stages. This control enables the equipment to use the minimum amount of hydraulic fluid and energy required to achieve the desired movement or position.
Efficient force transmission:
Telescopic cylinders are engineered to efficiently transmit forces from the hydraulic system to the desired application. The telescopic design allows for a direct and linear transfer of force, reducing energy losses that can occur in more complex mechanical systems. This efficient force transmission ensures that the energy supplied to the telescopic cylinder is effectively utilized to perform the desired work.
Compactness and weight reduction:
Telescopic cylinders offer compactness in equipment design, which contributes to energy efficiency. By retracting the cylinder stages, the overall length of the equipment can be minimized, reducing weight and inertia. This reduction in weight and inertia requires less energy to start and stop the movement of the equipment, resulting in energy savings during operation.
Optimized design:
Telescopic cylinders are designed with efficiency in mind. Manufacturers consider factors such as the cylinder’s bore size, rod diameter, and overall construction to ensure optimal performance while minimizing energy requirements. By using lightweight and high-strength materials, optimizing the cylinder’s dimensions, and reducing internal friction, telescopic cylinders can operate efficiently and contribute to energy savings.
Controlled motion:
Telescopic cylinders provide precise and controlled motion, allowing equipment operators to perform tasks with accuracy and efficiency. The hydraulic control system in telescopic cylinders enables smooth and proportional extension and retraction, reducing the need for excessive force or multiple adjustments. This controlled motion prevents energy waste and ensures that the equipment operates efficiently.
Applications in energy-efficient equipment:
Telescopic cylinders are utilized in various energy-efficient equipment, such as hybrid or electric-powered machinery. These equipment types rely on the optimization of energy usage to minimize environmental impact and reduce operating costs. Telescopic cylinders contribute to these objectives by providing efficient force transmission, controlled motion, and compact design.
Furthermore, the integration of advanced technologies, such as electronic control systems, sensors, and feedback mechanisms, can enhance the energy efficiency of equipment that incorporates telescopic cylinders. These technologies allow for further optimization of hydraulic system performance, energy recovery, and intelligent control of equipment operations.
Overall, telescopic cylinders contribute to energy-efficient equipment operation through reduced energy consumption, efficient force transmission, compactness and weight reduction, optimized design, and controlled motion. By utilizing telescopic cylinders in equipment design and considering energy-efficient practices, industries can achieve more sustainable and economical operation.
Consulting with equipment manufacturers or industry experts can provide further insights into the energy-saving benefits and applications of telescopic cylinders in specific equipment types.
Can telescopic cylinders be used in forestry equipment for tree handling?
Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:
Tree felling and extraction:
Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.
Boom and arm extension:
In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.
Precise control:
Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.
Load handling and stacking:
Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.
Stability and balance:
Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.
Advantages of telescopic cylinders in forestry equipment:
Telescopic cylinders offer several advantages in tree handling applications:
- Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
- Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
- Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
- Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
- Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.
Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.
Can telescopic cylinders be customized for specific machinery and equipment?
Yes, telescopic cylinders can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation:
Customizable stroke length:
Telescopic cylinders can be designed and manufactured with customized stroke lengths to suit the specific needs of machinery and equipment. The stroke length determines the maximum extension or retraction distance of the cylinder and can be tailored to match the required range of motion for a particular application.
Adjustable force and speed:
The hydraulic control system of telescopic cylinders allows for adjustability in terms of force and speed. The system can be configured to provide the necessary force output for the machinery or equipment, ensuring optimal performance. Additionally, the speed of extension and retraction can be adjusted to match the operational requirements, enabling precise and efficient operation.
Mounting options:
Telescopic cylinders can be customized with different mounting options to facilitate easy integration with specific machinery and equipment. Mounting configurations can vary depending on factors such as available space, mounting orientation, and compatibility with existing systems. Manufacturers can provide various mounting solutions to ensure seamless installation.
Sealing and protection:
In certain applications, telescopic cylinders may require specialized sealing and protection features. Manufacturers can customize the cylinder design to incorporate seals and protective coatings that are suitable for the working environment. This customization helps enhance the longevity and reliability of the cylinder, especially in harsh operating conditions.
Material selection:
Telescopic cylinders can be manufactured using different materials to meet specific machinery and equipment requirements. Material selection depends on factors such as load capacity, operating temperature, corrosion resistance, and weight considerations. Manufacturers can offer material options to ensure the cylinder’s compatibility and performance in the intended application.
Integration with control systems:
Telescopic cylinders can be integrated with control systems and sensors to enable advanced functionality and automation. Customization may involve incorporating position sensors, pressure sensors, or other feedback devices to provide real-time data and enhance the overall performance and safety of the machinery or equipment.
Overall, telescopic cylinders can be customized in terms of stroke length, force and speed adjustability, mounting options, sealing and protection features, material selection, and integration with control systems. This customization allows telescopic cylinders to be tailored to the specific requirements of machinery and equipment, ensuring optimal performance and functionality.
It’s important to collaborate with the manufacturer or a qualified expert to determine the appropriate customization options and ensure compliance with relevant industry standards and regulations.
editor by Dream 2024-04-24
China Standard Ashun Oil Shun Cylinder Rod Hydraulic Cylinder Ho-B-N-080-a-040-N-0200-N-N-Astoo vacuum pump brakes
Product Description
Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.
Q2: How to make payment?
A2: Paypal, Western Union, Money Gram or T/T transfer
Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.
Q4: What is the packing method?
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.
Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.
Q6: What is the warranty
A6: 12 months against B/L date
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 60/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do hydraulic cylinders enhance the performance of construction and mining equipment?
Hydraulic cylinders play a vital role in enhancing the performance of construction and mining equipment by providing powerful and precise linear motion. These industries require heavy-duty machinery that can withstand demanding conditions and efficiently perform tasks such as lifting, pushing, and digging. Here’s a detailed explanation of how hydraulic cylinders enhance the performance of construction and mining equipment:
1. Power and Force:
– Hydraulic cylinders are capable of generating substantial force, allowing construction and mining equipment to handle heavy loads and perform challenging tasks. The hydraulic system applies pressure to the fluid, which is transmitted to the hydraulic cylinder, resulting in the movement of the piston rod. The larger the diameter of the cylinder, the greater the force that can be generated. Hydraulic cylinders enable the equipment to exert significant force, making it possible to lift and move heavy materials, excavate soil and rock, and perform other demanding operations.
2. Precise Control:
– Hydraulic cylinders offer precise control over the movement of construction and mining equipment. By regulating the flow of hydraulic fluid into and out of the cylinder through control valves, operators can precisely control the speed, position, and force exerted by the hydraulic cylinder. This level of control allows for accurate and controlled movements, enabling operators to perform tasks with precision and efficiency. Whether it’s lifting a specific load, positioning an attachment, or maneuvering in tight spaces, hydraulic cylinders provide the necessary control for optimal equipment performance.
3. Adaptability:
– Hydraulic cylinders are highly adaptable to various construction and mining equipment. They can be designed and manufactured in different sizes, stroke lengths, and configurations to suit specific requirements. Hydraulic cylinders can be integrated into different types of equipment, such as excavators, loaders, bulldozers, and drilling rigs. Their adaptability allows for the customization of equipment to meet the needs of different applications and operating conditions, enhancing overall performance.
4. Durability and Reliability:
– Construction and mining environments are known for their harsh conditions, including extreme temperatures, vibrations, and exposure to dust, dirt, and debris. Hydraulic cylinders are designed to withstand these challenging conditions and provide long-lasting performance. They are constructed using robust materials, such as high-strength steel, and equipped with seals and components that can endure heavy loads, impacts, and contaminants. The durability and reliability of hydraulic cylinders ensure that construction and mining equipment can operate continuously and withstand the demanding nature of these industries.
5. Safety:
– Hydraulic cylinders contribute to the safety of construction and mining equipment operations. Their precise control allows operators to perform tasks with accuracy, minimizing the risk of accidents and damage to the equipment or surrounding structures. Hydraulic cylinders also enable the implementation of safety features, such as overload protection systems and emergency stop mechanisms, ensuring the safe operation of the equipment. The reliable and controlled movements provided by hydraulic cylinders enhance overall safety in construction and mining operations.
6. Increased Productivity:
– By providing the necessary power, precise control, and adaptability, hydraulic cylinders contribute to increased productivity in construction and mining applications. Construction and mining equipment equipped with hydraulic cylinders can perform tasks more efficiently and effectively, reducing the time and effort required to complete projects. The ability to handle heavy loads, control movements precisely, and adapt to various tasks improves the overall productivity of the equipment, leading to cost savings and improved project timelines.
In summary, hydraulic cylinders enhance the performance of construction and mining equipment by providing power, precise control, adaptability, durability, and safety. They enable these machines to handle heavy loads, perform tasks with accuracy, withstand harsh conditions, and increase productivity. Hydraulic cylinders are integral components that contribute to the efficiency and effectiveness of construction and mining operations.
Contribution of Hydraulic Cylinders to the Precision of Robotic and Automation Systems
Hydraulic cylinders play a significant role in enhancing the precision of robotic and automation systems. These systems rely on precise and controlled movements to perform various tasks with accuracy and repeatability. Let’s explore how hydraulic cylinders contribute to the precision of robotic and automation systems:
- Precise Positioning: Hydraulic cylinders enable precise positioning of robotic arms or automation components. They provide accurate control over the linear motion required for tasks such as picking, placing, and assembly. By precisely controlling the extension and retraction of the hydraulic cylinder, the system can achieve the desired position with high accuracy, ensuring precise alignment and consistent results.
- Controlled Motion: Hydraulic cylinders offer controlled and smooth motion, which is crucial for precise operation in robotic and automation systems. The flow of hydraulic fluid can be precisely regulated to control the speed and acceleration of the cylinder’s movement. This precise control allows for gentle and controlled movements, minimizing vibrations, overshooting, or jerky motions that could affect the accuracy of the system.
- Force Control: Hydraulic cylinders provide force control capabilities that contribute to precision in robotic and automation systems. By adjusting the hydraulic pressure, the force exerted by the cylinder can be precisely controlled. This is particularly valuable in applications that require delicate force-sensitive tasks, such as gripping fragile objects or performing precise force feedback during assembly or testing processes.
- Load Handling: Hydraulic cylinders are capable of handling heavy loads, allowing robotic and automation systems to manipulate and transport objects with precision. The high force capabilities of hydraulic cylinders ensure secure and stable handling of loads, minimizing the risk of slippage or imprecise positioning. This is crucial in applications where precise control over heavy objects is required, such as material handling or industrial assembly processes.
- Durability and Reliability: Hydraulic cylinders are known for their durability and reliability in demanding industrial environments. The ability to withstand repeated use, high loads, and harsh conditions ensures consistent performance over time. This reliability contributes to the precision of robotic and automation systems, as any deviation or failure in the cylinder’s movement could lead to inaccuracies or disruptions in the system’s operation.
In summary, hydraulic cylinders make significant contributions to the precision of robotic and automation systems by enabling precise positioning, controlled motion, force control, load handling, and offering durability and reliability. These capabilities ensure accurate and repeatable movements, minimize errors, and enhance the overall precision of the system. By incorporating hydraulic cylinders into robotic and automation systems, manufacturers can achieve higher levels of precision, efficiency, and productivity in various industrial applications.
Can hydraulic cylinders be adapted for use in both industrial and mobile equipment?
Yes, hydraulic cylinders can be adapted for use in both industrial and mobile equipment. The versatility and adaptability of hydraulic systems make them suitable for a wide range of applications across various industries. Here’s a detailed explanation:
1. Industrial Equipment:
– Hydraulic cylinders are extensively used in industrial equipment such as manufacturing machinery, construction equipment, material handling systems, and heavy-duty machinery. They provide the necessary force and controlled movement for tasks such as lifting, pushing, pulling, and positioning heavy loads. Industrial hydraulic cylinders are typically designed for robustness, durability, and high load-bearing capacities to withstand the demanding environments and heavy-duty applications encountered in industries.
2. Mobile Equipment:
– Hydraulic cylinders are also widely adopted in mobile equipment, including agricultural machinery, mining equipment, forestry machinery, and transportation vehicles. These cylinders enable various functions such as tilting, lifting, steering, and stabilizing. Mobile hydraulic cylinders are designed to be compact, lightweight, and efficient to meet the specific requirements of mobile applications. They are often integrated into hydraulic systems that power multiple functions in a single machine.
3. Adaptability:
– One of the key advantages of hydraulic cylinders is their adaptability. They can be customized and configured to suit different operating conditions, equipment sizes, load capacities, and speed requirements. Hydraulic cylinder manufacturers offer a wide range of sizes, stroke lengths, mounting options, and rod configurations to accommodate diverse applications. This adaptability allows hydraulic cylinders to be utilized in both industrial and mobile equipment, serving various purposes across different sectors.
4. Mounting Options:
– Hydraulic cylinders can be adapted to different mounting arrangements to suit the specific requirements of industrial and mobile equipment. They can be mounted in various orientations, including vertical, horizontal, or at an angle. Different mounting options, such as flange mounts, trunnion mounts, and clevis mounts, provide flexibility in integrating hydraulic cylinders into different equipment designs.
5. Integration with Hydraulic Systems:
– Hydraulic cylinders are often part of a larger hydraulic system that includes components such as pumps, valves, hoses, and reservoirs. These systems can be tailored to meet the specific needs of both industrial and mobile equipment. The hydraulic system’s design and configuration can be adapted to provide the necessary flow rates, pressures, and control mechanisms required for optimal performance in the intended application.
6. Control and Automation:
– Hydraulic cylinders in both industrial and mobile equipment can be integrated with control systems and automation technologies. This allows for precise and automated control of the cylinder’s movement and function. Proportional control valves, sensors, and electronic controls can be incorporated to achieve accurate positioning, speed control, and synchronization of multiple hydraulic cylinders, enhancing overall equipment performance and productivity.
7. Safety Considerations:
– Hydraulic cylinders for both industrial and mobile equipment are designed with safety in mind. They often feature built-in safety mechanisms such as overload protection, pressure relief valves, and emergency stop systems to prevent accidents and equipment damage. Safety standards and regulations specific to each industry are taken into account during the design and adaptation of hydraulic cylinders for different applications.
Overall, hydraulic cylinders offer the adaptability and performance required for use in both industrial and mobile equipment. Their versatility, customizable features, mounting options, integration capabilities, and safety considerations make them suitable for a wide range of applications across diverse industries. Whether it’s heavy-duty industrial machinery or mobile equipment operating in challenging environments, hydraulic cylinders can be adapted to meet the specific needs and requirements of various equipment types.
editor by Dream 2024-04-23
China Best Sales Clamptek Jiagang Clhw Built-in Sensor Clamp Oil Cylinder Pcf-35/45 Parallel Hydraulic Angle Cylinder vacuum pump connector
Product Description
Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.
Q2: How to make payment?
A2: Paypal, Western Union, Money Gram or T/T transfer
Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.
Q4: What is the packing method?
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.
Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.
Q6: What is the warranty
A6: 12 months against B/L date
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 80/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What role do hydraulic cylinders play in optimizing power distribution and efficiency?
Hydraulic cylinders play a significant role in optimizing power distribution and efficiency in various applications. They are widely used in industries such as construction, manufacturing, agriculture, and transportation, where efficient power transmission and precise control are essential. Here’s a detailed explanation of the role hydraulic cylinders play in optimizing power distribution and efficiency:
1. Power Transmission:
– Hydraulic cylinders serve as a means of power transmission in hydraulic systems. They convert the hydraulic fluid’s pressure and flow into linear mechanical force, allowing for controlled movement of loads. Hydraulic cylinders efficiently transmit power from an energy source, such as a hydraulic pump, to the working components of the system. The ability to transmit power over long distances with minimal energy losses makes hydraulic cylinders an efficient choice for various applications.
2. High Power Density:
– Hydraulic cylinders offer high power density, meaning they can generate significant force relative to their size. This characteristic enables compact and lightweight hydraulic systems while delivering substantial power output. Hydraulic cylinders can produce high forces even at low operating speeds, making them suitable for heavy-duty applications. The high power density of hydraulic cylinders contributes to the optimization of power distribution by maximizing the force output while minimizing the system’s overall size and weight.
3. Load Handling and Control:
– Hydraulic cylinders provide precise load handling and control capabilities, contributing to power distribution optimization. By adjusting the flow of hydraulic fluid to the cylinder, operators can control the speed, force, and direction of the cylinder’s movement. This level of control allows for accurate positioning and smooth operation of loads, reducing energy waste and improving overall system efficiency. Hydraulic cylinders enable precise load handling and control, leading to optimal power distribution and improved energy efficiency.
4. Variable Force and Speed:
– Hydraulic cylinders offer the advantage of variable force and speed control. By regulating the flow of hydraulic fluid, the force exerted by the cylinder can be adjusted as needed. This flexibility enables hydraulic systems to adapt to different load requirements, optimizing power distribution. Hydraulic cylinders can operate at varying speeds, allowing for efficient power distribution across different stages of an operation. The ability to vary force and speed according to the application’s demands enhances energy efficiency and overall system performance.
5. Energy Recovery:
– Hydraulic cylinders can contribute to energy efficiency through energy recovery mechanisms. In certain applications, hydraulic systems utilize accumulators to store and release energy. Hydraulic cylinders can store energy during deceleration or when the load is lowering, and then release it to assist in subsequent movements. This energy recovery process reduces the overall energy consumption of the system, optimizing power distribution and improving efficiency. The ability to recover and reuse energy enhances the sustainability and cost-effectiveness of hydraulic systems.
6. Integrated Control Systems:
– Hydraulic cylinders can be integrated into advanced control systems, such as servo control or proportional control systems. These systems utilize electronic feedback, sensors, and control algorithms to optimize power distribution and efficiency. By continuously monitoring and adjusting the flow of hydraulic fluid, the control systems ensure that the cylinder operates at the most efficient operating point, minimizing energy losses and maximizing power distribution. Integrated control systems enhance the overall energy efficiency of hydraulic systems and contribute to power optimization.
7. System Efficiency Improvement:
– Hydraulic cylinders, when combined with other components in a hydraulic system, contribute to overall system efficiency improvement. The integration of efficient hydraulic pumps, valves, and actuators helps minimize energy losses, pressure drops, and heat generation. By optimizing the design and configuration of the hydraulic system, including the selection of appropriate cylinder sizes, operating pressures, and control strategies, power distribution can be optimized, leading to improved energy efficiency. Proper system design and component selection are critical for achieving optimal power distribution and efficiency.
In summary, hydraulic cylinders play a crucial role in optimizing power distribution and efficiency in various applications. They enable efficient power transmission, offer high power density, provide precise load handling and control, allow for variable force and speed control, facilitate energy recovery, can be integrated into advanced control systems, and contribute to overall system efficiency improvement. By leveraging the capabilities of hydraulic cylinders, industries can achieve better power utilization, reduced energy consumption, and improved system performance.
How do hydraulic cylinders contribute to the efficiency of agricultural tasks like plowing?
Hydraulic cylinders play a crucial role in improving the efficiency of agricultural tasks, including plowing. These cylinders provide several benefits that enhance the performance and productivity of agricultural machinery. Let’s explore how hydraulic cylinders contribute to the efficiency of plowing and other agricultural tasks:
- Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, which is essential for tasks like plowing. The hydraulic system supplies pressurized fluid to the cylinders, converting hydraulic energy into mechanical force. This force is then utilized to drive plow blades through the soil, overcoming resistance and facilitating efficient soil penetration. The power generated by hydraulic cylinders ensures effective plowing, even in tough or compacted soil conditions.
- Adjustable Working Depth: Hydraulic cylinders allow for easy and precise adjustment of the plow’s working depth. By controlling the extension or retraction of the hydraulic cylinder, farmers can adjust the depth of the plow blades according to soil conditions, crop requirements, or their specific preferences. This adjustability enhances efficiency by ensuring optimal soil tillage and minimizing unnecessary energy expenditure. Farmers can adapt the plowing depth to different field areas, optimizing the use of resources and promoting uniform crop growth.
- Responsive Control: Hydraulic systems offer highly responsive control, enabling farmers to make quick adjustments during plowing operations. Hydraulic cylinders respond rapidly to changes in hydraulic pressure and valve settings, allowing for immediate modifications in the plow’s position, depth, or angle. This responsiveness enhances efficiency by facilitating on-the-go adjustments based on soil variations, obstacles, or changing field conditions. Farmers can maintain precise control over the plow’s performance, ensuring effective soil tillage and minimizing the risk of crop damage.
- Implement Versatility: Hydraulic cylinders enable the attachment of various implements to agricultural machinery, expanding their functionality and versatility. In the context of plowing, hydraulic cylinders allow for the attachment and detachment of plow blades or other tillage implements. This versatility enables farmers to adapt their equipment to different soil types, field sizes, or specific plowing requirements. By using hydraulic cylinders, farmers can easily switch between different implements, optimizing their equipment for specific tasks and maximizing efficiency.
- Efficient Time Management: Hydraulic cylinders contribute to time efficiency in agricultural tasks like plowing. With hydraulic systems, farmers can operate plows at higher speeds while maintaining control and precision. The responsive nature of hydraulic cylinders allows for efficient turning, maneuvering, and repositioning of plows, minimizing downtime and optimizing field coverage. This time efficiency translates into increased productivity and reduced overall operational costs. Farmers can accomplish plowing tasks more quickly, allowing them to cover larger field areas in less time.
In summary, hydraulic cylinders significantly contribute to the efficiency of agricultural tasks like plowing. Through powerful force generation, adjustable working depth, responsive control, implement versatility, and efficient time management, hydraulic systems equipped with cylinders enhance the performance and productivity of agricultural machinery. These contributions allow farmers to accomplish plowing tasks more effectively, optimize field operations, and achieve improved overall efficiency in their agricultural practices.
How do hydraulic cylinders ensure precise and controlled movement in equipment?
Hydraulic cylinders are widely used in various equipment and machinery to provide precise and controlled movement. They utilize hydraulic fluid and mechanical components to achieve accurate positioning, smooth operation, and reliable control. Here’s a detailed explanation of how hydraulic cylinders ensure precise and controlled movement in equipment:
1. Hydraulic Principle:
– Hydraulic cylinders operate based on Pascal’s law, which states that pressure exerted on a fluid is transmitted equally in all directions. The hydraulic fluid is contained within the cylinder, and when pressure is applied, it acts on the piston, generating force. By controlling the pressure and flow of hydraulic fluid, the movement of the cylinder can be precisely regulated, allowing for accurate and controlled motion.
2. Force and Load Management:
– Hydraulic cylinders are designed to handle specific loads and forces. The force generated by the hydraulic cylinder depends on the hydraulic pressure and the surface area of the piston. By adjusting the pressure, the force output can be controlled. This allows for precise management of the load and ensures that the cylinder can handle the required force without exerting excessive or insufficient force. Proper load management contributes to the precise and controlled movement of the equipment.
3. Control Valves:
– Control valves play a crucial role in regulating the flow and direction of hydraulic fluid within the cylinder. These valves allow operators to control the extension and retraction of the cylinder, adjust the speed of movement, and stop or hold the cylinder at any desired position. By manipulating the control valves, precise and controlled movement can be achieved, enabling operators to position equipment accurately and perform specific tasks with precision.
4. Flow Control:
– Hydraulic cylinders incorporate flow control valves to manage the rate of hydraulic fluid flow. These valves control the speed of the cylinder’s extension and retraction, allowing for smooth and controlled movement. By adjusting the flow rate, operators can precisely control the speed of the cylinder, ensuring that it moves at the desired rate without sudden or erratic movements. Flow control contributes to the overall precision and control of the equipment’s movement.
5. Position Sensing:
– To ensure precise movement, hydraulic cylinders can be equipped with position sensing devices such as linear transducers or proximity sensors. These sensors provide feedback on the position of the cylinder, allowing for accurate position control and closed-loop control systems. By continuously monitoring the position, the equipment’s movement can be controlled with high accuracy, enabling precise positioning and operation.
6. Proportional Control:
– Advanced hydraulic systems utilize proportional control technology, which allows for precise and fine-tuned control of the hydraulic cylinder’s movement. Proportional valves, often operated by electronic control systems, provide variable flow rates and pressure adjustments. This technology enables precise control of speed, force, and position, resulting in highly accurate and controlled movement of the equipment.
7. Cushioning and Damping:
– Hydraulic cylinders can incorporate cushioning and damping mechanisms to ensure smooth and controlled movement at the end of the stroke. Cushioning features, such as adjustable cushions or shock absorbers, reduce the impact and decelerate the cylinder before reaching the end of the stroke. This prevents abrupt stops and minimizes vibrations, contributing to precise and controlled movement.
8. Load Compensation:
– Some hydraulic systems utilize load compensation mechanisms to maintain precise movement even when the load varies. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This compensation ensures that the equipment’s movement remains accurate and controlled, regardless of changes in the applied load.
In summary, hydraulic cylinders ensure precise and controlled movement in equipment through the application of hydraulic principles, force and load management, control valves, flow control, position sensing, proportional control, cushioning and damping mechanisms, and load compensation. These features and technologies allow operators to achieve accurate positioning, smooth operation, and reliable control, enabling equipment to perform tasks with precision and efficiency. The combination of hydraulic power and careful design considerations ensures that hydraulic cylinders deliver precise and controlled movement in a wide range of industrial applications.
editor by Dream 2024-04-19
China Hot selling Qingdao Customize High Quantity 2 Stage 3stage 3 Stage 4 Stage 5stage Telescopic Bolted Hydraulic Cylinder for Machinery vacuum pump oil near me
Product Description
Cylinder Photo
Hydraulic cylinder details
Multi-stage telescopic hydraulic cylinders supply a long stroke, it can also afford a big lifting force. Single and double acting multi-stage telescoping hydraulic cylinders for many applications including material handling, waste/recycling compaction, harvesting and others.
Custom-made 4 stages telescopic long stroke hydraulic cylinders, which are produced according to the drawings provided by the customer.
We can meet your special requirements for hydraulic cylinders.The cylinders could be customized from 2 stages to 7 stages.
This type hydraulic cylinder mainly used in the dump vehicles and equipments.
Material:
Piston: 45# steel
Tube: 20# steel
Piston rod: chrome plated 45# steel
Cylinder cap: 20# steel
Cylinder base: 20# steel
Seal ring: famous Chinese brand or international brand
Max.Cylinder Bore: 300mm
Max.Piston Rod Dia.: 280mm
Max.Retract Length: 3500mm
Max .Stroke:Single stage cylinder 6500mm
Multi-stage cylinder 12000mm
Max.Working Pressure:35Mpa
Min.Working Pressure:10Mpa
Working Pressure of Heavy-duty Cylinder: 40Mpa
We have all the main essential components for hydraulic cylinders with exceptional attention and precision (from metal processing to assembly and painting). The cylinders are built using a large modern park of equipments where performed such processes as: turning, milling and welding. Painting is performed on the modern industrial paint equipment which is in accordance with requirements for protective coating. In production we use raw materials such as tubes, chrome plated bars and sealing components directly from industry leading suppliers.
Telescopic cylinders are also referred to as telescoping cylinders and multi-stage telescopic cylinders.
Multi Stage Hydraulic Cylinder Applictions:dump truck, dumper lorry, tipping truck, tipper
Other cylinders photos
Cylinder Process
Cylinder apply
Company Other Products Photos
About Us
HangZhou Ruilan is specialized in producing and designing hydraulic Cylinders of all sizes and types,and we costumize welding casting forging parts , agricultural machinery parts, machine attachment and so on, CHINAMFG customize you want! . Ruilan has been serving customers for 15 years. Ruilan commite to quality, quick response, professional design, on time delivery, and competitive prices. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What safety considerations are important when using machinery with telescopic cylinders?
When using machinery with telescopic cylinders, several safety considerations should be taken into account. Here’s a detailed explanation:
Operator training and awareness:
Proper training and awareness are crucial for operators working with machinery equipped with telescopic cylinders. Operators should receive comprehensive training on the safe operation of the machinery, including the correct use of telescopic cylinders. They should be familiar with the controls, safety features, and best practices to ensure their own safety and the safety of others in the vicinity.
Regular inspection and maintenance:
Regular inspection and maintenance of telescopic cylinders are essential for ensuring safe operation. Cylinders should be inspected for signs of wear, damage, or leakage. Any issues should be addressed promptly to prevent potential failures or accidents. Lubrication, if required, should be performed according to the manufacturer’s recommendations.
Proper load capacity and stability:
It is important to ensure that the machinery and telescopic cylinders are used within their specified load capacity. Exceeding the load capacity can lead to instability, loss of control, or structural failure. Proper weight distribution and secure attachment of loads are also critical to maintaining stability during operation.
Safe work environment:
Creating a safe work environment is essential when using machinery with telescopic cylinders. This includes maintaining clear and unobstructed pathways for the machinery’s movement, removing potential hazards, and implementing appropriate safety measures such as barriers, signage, or warning systems to prevent unauthorized access or accidental contact with the machinery or its cylinders.
Emergency stop and shutdown procedures:
Emergency stop and shutdown procedures should be clearly communicated to operators. They should be trained on how to quickly and effectively stop the machinery’s operation in case of an emergency or when a safety hazard is detected. These procedures should be regularly reviewed and practiced to ensure a prompt response in critical situations.
Proper guarding and protection:
Telescopic cylinders should be adequately guarded to prevent accidental contact and potential injuries. Guarding may include physical barriers, shields, or sensors that detect the presence of personnel or objects in the cylinder’s path. Additionally, operators should wear appropriate personal protective equipment (PPE) as recommended for the specific task and working environment.
Compliance with regulations and standards:
It is important to ensure compliance with relevant regulations and safety standards when using machinery with telescopic cylinders. These regulations and standards may address aspects such as design, installation, operation, maintenance, and inspection of the machinery and its components. Adhering to these requirements helps mitigate risks and promotes a safe working environment.
Regular risk assessments:
Regular risk assessments should be conducted to identify and address potential hazards associated with the machinery and telescopic cylinders. This includes assessing risks related to operation, maintenance, equipment failure, environmental conditions, and human factors. Mitigation measures should be implemented based on the findings of the risk assessment.
Overall, safety considerations when using machinery with telescopic cylinders involve operator training, regular inspection and maintenance, load capacity and stability, safe work environment, emergency procedures, guarding and protection, compliance with regulations, and regular risk assessments. By addressing these considerations, the risks associated with operating machinery with telescopic cylinders can be minimized, promoting a safer working environment.
It’s important to consult the machinery manufacturer’s guidelines, safety manuals, and applicable regulations to ensure comprehensive understanding and implementation of safety practices.
Can telescopic cylinders be used in agricultural machinery for various tasks?
Yes, telescopic cylinders are widely used in agricultural machinery for various tasks. Here’s a detailed explanation:
Versatile applications:
Telescopic cylinders offer versatility and are suitable for a wide range of tasks in agricultural machinery. They are commonly employed in equipment such as tractors, harvesters, sprayers, loaders, and tillers.
Lifting and lowering:
Telescopic cylinders are utilized for lifting and lowering applications in agricultural machinery. They provide the necessary force to raise and lower attachments such as loader buckets, tillage implements, or harvest platforms. The telescopic cylinder’s design allows for efficient force transmission, enabling smooth and controlled movement.
Reach extension:
Telescopic cylinders are valuable for extending the reach of agricultural machinery. For example, in a harvester, telescopic cylinders can extend the reach of the harvesting arm, allowing operators to access crops in a broader area. This extension capability increases efficiency and productivity by reducing the need for repositioning the machinery frequently.
Adjustable working height:
Telescopic cylinders are employed in agricultural machinery to provide adjustable working heights. For instance, in sprayers or spreaders, telescopic cylinders can adjust the height of the booms or spreading mechanisms, allowing for precise application of fertilizers, pesticides, or seeds.
Folding and unfolding:
Telescopic cylinders are used to facilitate folding and unfolding actions in agricultural machinery. This is particularly useful for equipment that needs to be transported or stored in compact configurations. For example, telescopic cylinders can fold the wings of a tillage implement for easy transport on roads or through narrow gateways.
Stabilization and leveling:
Telescopic cylinders contribute to the stabilization and leveling of agricultural machinery. They are employed in tasks such as adjusting the height and angle of plows, cultivators, or balers to ensure proper ground engagement and uniform performance.
Advantages of telescopic cylinders in agricultural machinery:
Telescopic cylinders offer several advantages in agricultural machinery:
- Versatility: Telescopic cylinders can be used for various tasks, providing flexibility and adaptability in agricultural operations.
- Efficient force transmission: The telescopic design allows for direct and efficient force transmission, maximizing the equipment’s lifting and operational capabilities.
- Precise control: Telescopic cylinders enable precise control over movements, allowing for accurate positioning and improved productivity.
- Space optimization: Telescopic cylinders contribute to space optimization by enabling folding or compact configurations, facilitating transportation and storage of agricultural machinery.
Overall, telescopic cylinders are valuable components in agricultural machinery, offering versatility, efficient force transmission, precise control, and space optimization. They enhance the functionality and productivity of agricultural equipment across various tasks and applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in agricultural machinery.
Can you explain the purpose and role of telescopic cylinders in machinery?
Telescopic cylinders play a crucial role in various machinery and equipment applications. Here’s a detailed explanation:
Purpose of telescopic cylinders:
Telescopic cylinders are primarily used when an extended stroke length is required while maintaining a compact retracted length. They enable machinery and equipment to achieve extended reach, height adjustment, or lifting capabilities without increasing the overall size or footprint of the cylinder. The purpose of telescopic cylinders is to provide efficient and reliable linear motion in applications that demand long stroke lengths.
Role of telescopic cylinders in machinery:
- Material Handling: Telescopic cylinders are extensively used in material handling machinery, such as cranes, forklifts, and loaders. They enable the extension and retraction of booms, arms, or lifting mechanisms, allowing operators to reach higher or farther to handle and transport materials with ease.
- Dump Trucks and Trailers: Telescopic cylinders are commonly employed in dump trucks and trailers for the tilting and unloading of cargo or bulk materials. The extendable stroke of the cylinder raises the bed or container to dump the contents, enabling efficient unloading and reducing manual labor.
- Aerial Platforms: Telescopic cylinders are essential components in aerial work platforms, such as cherry pickers or scissor lifts. They facilitate the vertical movement and height adjustment of the platform, allowing operators to access elevated work areas safely.
- Construction Equipment: Telescopic cylinders are used in various construction equipment, including excavators, backhoes, and telescopic handlers. They provide the necessary extension and retraction for the boom, arm, or bucket, enabling digging, lifting, and reaching capabilities in construction and earthmoving applications.
- Mobile Equipment: Telescopic cylinders are utilized in mobile equipment, such as telescopic cranes and mobile cranes. They enable the extension and retraction of the boom sections, allowing for increased reach and lifting capacities in lifting and construction operations.
- Specialized Machinery: Telescopic cylinders find application in specialized machinery, such as fire truck aerial ladders, telescopic masts, or telescopic booms in industrial and military equipment. They provide the required extension and retraction for specific tasks, such as firefighting, surveillance, or equipment deployment.
The role of telescopic cylinders in machinery is to provide precise and controlled linear motion, enabling the equipment to perform specific tasks with extended reach, height adjustment, or lifting capabilities. They contribute to the efficiency, versatility, and productivity of machinery in various industries.
It’s important to ensure proper selection, installation, and maintenance of telescopic cylinders based on the specific machinery requirements and manufacturer’s guidelines to ensure safe and reliable operation.
editor by CX 2024-04-08
China supplier 2024 Newly Hot Selling Double Acting Hydraulic Oil Cylinder Made in China Factory Price for Wholesale vacuum pump engine
Product Description
2571 Newly Hot Selling Double Acting Hydraulic Oil Cylinder Made in China Factory Price
Hydraulic Cylinder
Hydraulic cylinders are important components in earth-moving machines, such as excavators and wheel loaders, as they transform hydraulic force into linear movement, by facilitating the lifting and moving of heavy materials.
Technical Specifications
Part Name |
Excavator Hydraulic Cylinder |
Material | Q345B+40CR |
Finish |
Smooth |
Colors |
Black or yellow or blue or orange |
Types |
hydraulic bucket cylinder/ arm cylinder/ boom cylinder |
Surface Hardness | HRC49-55 |
Warranty time | one year |
Certificate | ISO9001:2015 |
Related parts | H link, link rods, bucket tooth, adaptor, teeth pin and lock, excavator boom and arm, undercarriage parts, excavator bucket |
Detailed Photos
Features
High Strength
1.Joint development of new high-strength steel pipes with CHINAMFG domestic special steel enterprises
2.Increase Work pressure
High Performance
1. On average, about 20 seconds faster than similar products
2. Reduced working time by 19%
Light Weight
1. The lightest weight to win the biggest lift
2. Steel pipe and hydraulic combined weight loss is about 17%
3. Working oil volume reduced by 16%
Excellent Design
1. Optimized design, cylinder bore is reduced, working pressure is increased
2. Using imported brand seals
3. Respond to 2 kinds of severe conditions of high temperature and low temperature
4. Can adapt to -40 °C -110 °C working temperature
5. Apply 5 utility model patents
Manufacturing Capabilities
Welded Designs with 1″ to 20″ Bores
Tie Rod Designs with 2″ to 5″ Bores
Telescopic Designs, Single & Double Acting
Large Bore Hydraulic Cylinders
Stroke Lengths up to 50 Feet
Designed for Pressures up to 7,500 PSI
Custom Cylinder Features
Integrated Linear Position Sensors
Built-in Valves and Manifolds
Double Ended cylinder designs
Piggyback cylinder designs
Integrated Cushioning and Rephasing
Safety Designs with Velocity Fuses
Spherical and High-Wear Bushings
Custom Mounts and End Fittings
High-Strength / Weight-saving Materials
Color-matched Paint and Labeling
Packaging & Shipping
Company Profile
HangZhou Packway Technology Development Co., LTD, founded in March 2005, has been at the forefront of innovation, constantly striving to develop cutting-edge technologies and solutions. With our headquarters located in HangZhou,we currently operate 3 subsidiary companies, each connected with different sectors of the machinery market.
Certificate Passed
Our factory has passed the certificate: ISO9001/ISO14001/CE/ROHS
FAQ
Q1: Are you a trading company or a manufacturer ?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 20-35 working days if we don’t. but it also depends on the product
requirements and quantity.
Q4: Do you provide samples? Are the samples free or not?
A: Yes, we can provide samples, but they are non-free of charge.
Q5: What is your payment term?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to contact us.
Q6: What are your after-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in solving customers’ problems is always our goal. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | 2500psi/3000psi |
Work Temperature: | Normal Temperature |
Acting Way: | Double Acting |
Working Method: | Rotary |
Adjusted Form: | Regulated Type |
Samples: |
US$ 800/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can hydraulic cylinders be integrated with advanced control systems and automation?
Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:
1. Electronic Control:
– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.
2. Closed-Loop Control:
– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.
3. Proportional and Servo Control:
– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.
4. Human-Machine Interface (HMI):
– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.
5. Communication and Networking:
– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.
6. Automation and Sequential Control:
– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.
7. Predictive Maintenance and Condition Monitoring:
– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.
In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.
Customization of Hydraulic Cylinders for Marine and Offshore Applications
Yes, hydraulic cylinders can be customized for use in marine and offshore applications. These environments present unique challenges, such as exposure to corrosive saltwater, high humidity, and extreme operating conditions. Customization allows hydraulic cylinders to meet the specific requirements and withstand the harsh conditions encountered in marine and offshore settings. Let’s delve into the details of how hydraulic cylinders can be customized for marine and offshore applications:
- Corrosion Resistance: Marine and offshore environments expose hydraulic cylinders to corrosive elements, such as saltwater. To mitigate corrosion, hydraulic cylinders can be customized with materials and surface treatments that provide enhanced corrosion resistance. For example, cylinders can be constructed from stainless steel or coated with protective layers like chrome plating or specialized coatings to withstand the corrosive effects of saltwater.
- Sealing and Environmental Protection: Hydraulic cylinders for marine and offshore applications require robust sealing systems to prevent water ingress and protect internal components. Customized sealing solutions, such as high-quality seals, wipers, and gaskets, can be employed to ensure effective sealing and resistance to water, debris, and contaminants. Additionally, hydraulic cylinders can be designed with protective features like bellows or boots to shield vulnerable areas from environmental elements.
- High-Pressure and Shock Resistance: Marine and offshore operations may involve high-pressure hydraulic systems and encounters with dynamic loads or shocks. Customized hydraulic cylinders can be engineered to withstand these demanding conditions. They can be designed with reinforced construction, thicker walls, and specialized components to handle high-pressure applications and absorb shock loads, ensuring reliable performance and durability.
- Temperature and Fluid Compatibility: Marine and offshore applications can expose hydraulic cylinders to extreme temperature variations and specific fluid requirements. Customization allows the selection of materials, seals, and fluids compatible with the anticipated temperature range and the specific fluid being used. Hydraulic cylinders can be tailored to maintain optimal performance and reliability under challenging temperature conditions and with the designated fluid type.
- Mounting and Integration: Customized hydraulic cylinders can be designed to facilitate easy integration and mounting within marine and offshore machinery. Mounting options can be tailored to suit the available space and structural requirements of the equipment. Additionally, customized hydraulic cylinder designs can incorporate features for easy maintenance, accessibility, and connection to the hydraulic system, ensuring convenient installation and serviceability in marine and offshore applications.
In summary, hydraulic cylinders can be customized to meet the unique demands of marine and offshore applications. Customization enables the integration of corrosion-resistant materials, robust sealing systems, high-pressure and shock-resistant designs, temperature and fluid compatibility, as well as optimized mounting and integration features. By tailoring hydraulic cylinders to the specific requirements of marine and offshore environments, reliable performance, extended service life, and efficient operation can be achieved in these challenging operating conditions.
Can you explain the role and significance of hydraulic cylinders in machinery?
Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:
Role of Hydraulic Cylinders:
– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.
– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.
– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.
– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.
– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.
Significance of Hydraulic Cylinders:
– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.
– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.
– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.
– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.
– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.
– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.
Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.
editor by CX 2024-04-03
China Best Sales Csdls Hydraulic Engineering Accessory Piston Type Master Oil Cylinder for CZPT CZPT Putzmeister Schwing vacuum pump design
Product Description
Cylinder Type: | Mill type, head bolted, base welded |
Structure: | Piston type |
Standard: | GB/T15622-1995 JB/T15715-2000 |
Bore diameter: | Up to 700mm |
Rod diameter: | Up to 500mm |
Stroke length: | Up to 10,000mm |
Piston rod material: | 20#,45#,40Cr, 27SiMn,30CrMo,35CrMo,42CrMo |
Rod surface treatment: | Hard chrome plated, chrome/nickel plated, ceramic coated |
Tube material: | 20#, 25#, 45#, 27SiMn,30CrMo,35CrMo,42CrMo |
Tube surface painting: | Colors as RAL, thickness according to request |
Mounting type: | Clevis, cross tube, flange, trunnion, tang, thread |
Design pressure: | Up to 40Mpa |
Seal kits type: | PARKER, MERKEL, HALLITE, NOK, TRELLEBORG |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001 |
---|---|
Pressure: | with or Without High and Low Pressure Switch |
Work Temperature: | Normal or Lower Temperature with Matched Sealing |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Switching or Regulated Type |
Samples: |
US$ 1140/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can hydraulic cylinders be used for precise operations like CNC machining or molding?
Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:
1. Force and Control:
– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.
2. Adjustable Speed and Positioning:
– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.
3. Integrated Feedback Systems:
– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.
4. Damping and Vibration Control:
– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.
5. Customization and Adaptability:
– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.
6. Energy Efficiency:
– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.
7. Maintenance and Calibration:
– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.
In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
How do hydraulic cylinders handle variations in load, pressure, and speed?
Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here’s a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:
Variations in Load:
– Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.
Variations in Pressure:
– Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.
Variations in Speed:
– Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder’s extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder’s movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder’s movement.
Load-Sensing Technology:
– Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.
Accumulators:
– Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.
In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.
editor by CX 2024-04-02
China Custom The Factory Customizes a Variety of Double-Acting Telescopic Hydraulic Cylinders for Vehicles Such as Tractors vacuum pump oil near me
Product Description
Products Description
Product Name |
HSG Series Hydraulic Cylinder |
|||
Work Press |
7/14/16/21/31.5MPa 37.5/63MPa Can be Customized |
|||
Material |
Aluminum,Cast Iron,45mnb Steel,Stainless Steel |
|||
Bore Size |
40mm–320mm,Customizable |
|||
Shaft Diameter |
20mm–220mm,Customizable |
|||
Stroke Length |
30mm–14100mm,Customizable |
|||
Rod Surface Hardness |
HRC48-54 |
|||
Paint Color |
Black,Yellow,Blue,Brown,Customizable |
|||
Mounting |
Earring,Flange,Clevis.Foot,Trunnion,Customizable |
|||
Warrenty |
1 Year |
|||
MOQ |
1 Piece |
|||
Delivery Time |
7-15 Days,Also depands on specific demands |
|||
Certification |
ISO9001,CE |
Company Profile
QIANGLIN HYDRAULIC MACHINERY CO., LTD
QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner. |
FAQ:
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always our goal. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | High Pressure |
Work Temperature: | Normal Temperature |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can telescopic cylinders be used in material handling equipment for reach and lift?
Yes, telescopic cylinders are commonly used in material handling equipment to provide reach and lift capabilities. Here’s a detailed explanation:
Role in material handling:
Telescopic cylinders play a crucial role in material handling equipment by extending the reach and enabling the lifting of heavy loads. These cylinders are typically employed in equipment such as forklifts, telehandlers, reach stackers, and aerial work platforms.
Reach extension:
Telescopic cylinders allow material handling equipment to extend their reach by extending the boom or lifting arm. The nested design of the cylinder, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access materials at greater heights or reach into confined spaces.
Lifting capacity:
Telescopic cylinders provide the necessary lifting force to handle heavy loads in material handling equipment. The cylinder’s bore size, rod diameter, and overall construction are engineered to withstand the forces exerted during lifting and ensure safe and efficient load handling.
Precision control:
Telescopic cylinders offer precise control over the extension and retraction of the lifting arm or boom. The hydraulic control system regulates the flow of hydraulic fluid to each stage of the cylinder, allowing for smooth and controlled movement. This precise control is essential in material handling applications to ensure accurate positioning of loads and safe operation.
Compactness and flexibility:
Telescopic cylinders contribute to the compactness and flexibility of material handling equipment. By retracting the cylinder stages, the overall length of the equipment can be minimized, making it easier to maneuver in tight spaces. Additionally, the ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Variety of material handling equipment:
Telescopic cylinders are utilized in a wide range of material handling equipment to enhance reach and lift capabilities. Forklifts, for example, often incorporate telescopic cylinders to extend the forks and reach into pallet racks. Telehandlers and reach stackers utilize telescopic cylinders to extend the lifting arm and reach high stacking heights. Aerial work platforms utilize telescopic cylinders to extend the platform and provide elevated access for maintenance or construction tasks.
Advantages of telescopic cylinders in material handling:
Telescopic cylinders offer several advantages in material handling equipment:
- Increased reach: Telescopic cylinders allow operators to extend the equipment’s reach, enabling access to materials at greater heights or in confined spaces.
- Enhanced lifting capacity: Telescopic cylinders provide the necessary lifting force to handle heavy loads, expanding the equipment’s lifting capabilities.
- Precision and control: The hydraulic control system of telescopic cylinders allows for precise and controlled movement, ensuring accurate load positioning and safe operation.
- Compactness and flexibility: By retracting the cylinder stages, material handling equipment can be more compact and maneuverable, adapting to different working environments.
Overall, telescopic cylinders are widely used in material handling equipment to extend reach and enhance lifting capabilities. Their precise control, compactness, and flexibility make them essential components in various material handling applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, maintenance requirements, and safety considerations.
How do telescopic cylinders contribute to precise reach and manipulation?
Telescopic cylinders play a crucial role in enabling precise reach and manipulation in various applications. Here’s a detailed explanation:
Extended reach:
Telescopic cylinders allow for extended reach in equipment such as cranes, excavators, booms, and material handling machinery. The nested design of telescopic cylinders, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access objects or work areas that are located at a distance.
Precise positioning:
Telescopic cylinders provide precise positioning capabilities, allowing operators to manipulate objects with accuracy. The hydraulic control system regulates the extension and retraction of each stage of the cylinder, enabling smooth and controlled movement. This precise control is essential in applications that require accurate placement or manipulation of objects, such as in construction, manufacturing, or material handling.
Load handling:
Telescopic cylinders contribute to precise load handling by providing the necessary force and control. The cylinders are designed to handle heavy loads and can exert the required power to lift, lower, or manipulate objects with precision. The hydraulic control system allows operators to adjust the speed and movement of the telescopic cylinder, ensuring safe and controlled load handling.
Adaptability:
Telescopic cylinders offer adaptability in reaching and manipulating objects in various environments. Their nested design allows for compact retraction, making them suitable for applications with limited space. The ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.
Support for attachments:
Telescopic cylinders often support attachments or tools that enhance reach and manipulation capabilities. For example, in excavators, telescopic cylinders are used to extend the boom or arm, while additional attachments such as buckets or grabs facilitate precise material handling or excavation tasks.
Overall, telescopic cylinders contribute to precise reach and manipulation by offering extended reach, precise positioning, load handling capabilities, adaptability, and support for attachments. Their hydraulic control system and nested design enable operators to achieve accurate and controlled movements, enhancing productivity and efficiency in various applications.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, operating parameters, and recommended maintenance practices to ensure optimal performance and safety.
What is a telescopic cylinder and how does it work?
A telescopic cylinder is a type of hydraulic cylinder that consists of multiple nested stages or sections that can extend and retract, similar to a telescope. Here’s a detailed explanation:
A telescopic cylinder is primarily used when a long stroke length is required while maintaining a compact retracted length. It is commonly used in applications such as dump trucks, cranes, aerial platforms, and other equipment that require extended reach or height adjustment. Here’s how a telescopic cylinder works:
- Structure: A telescopic cylinder consists of a series of cylindrical stages or sleeves that are progressively nested inside one another. These stages are typically made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application.
- Extension and Retraction: When the telescopic cylinder is in the retracted position, the stages are nested inside one another, with the smallest stage located at the base. To extend the cylinder, hydraulic fluid is supplied to the base of the cylinder, creating pressure that pushes the smallest stage outwards. As the smallest stage extends, it exposes the next larger stage, which is then pushed out by the hydraulic pressure. This process continues until all the stages have extended, resulting in a longer overall stroke length.
- Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
- Retraction: To retract the telescopic cylinder, hydraulic fluid is supplied to the opposite side of the cylinder, typically to the largest stage. The hydraulic pressure acts on the largest stage, retracting it first. As each stage retracts, it nests inside the next smaller stage until the cylinder is fully retracted to its original compact length.
- Control and Stability: The extension and retraction of a telescopic cylinder are controlled by a hydraulic system. By regulating the flow and pressure of the hydraulic fluid, operators can precisely control the extension and retraction speed of the cylinder. The nested design of the stages provides stability and load-bearing capacity, allowing the telescopic cylinder to handle substantial loads.
The use of telescopic cylinders offers several benefits:
- Extended Stroke Length: Telescopic cylinders provide a significantly longer stroke length compared to traditional single-stage cylinders, enabling extended reach or height adjustment without increasing the overall size of the cylinder.
- Compact Design: The nested structure of telescopic cylinders allows for a compact retracted length, making them suitable for applications with space constraints.
- Versatility: Telescopic cylinders can be customized to meet specific stroke length requirements. The number of stages can be adjusted, and the cylinders can be designed for different load capacities and working conditions.
- Efficient Operation: The controlled extension and retraction of telescopic cylinders enable precise load handling and positioning, improving operational efficiency.
Overall, a telescopic cylinder is a hydraulic cylinder with nested stages that can extend and retract, providing an extended stroke length while maintaining a compact retracted length. Its structure and operation make it ideal for applications requiring long reach or height adjustment.
It’s important to follow the manufacturer’s guidelines and specifications for the telescopic cylinder, including proper maintenance and inspection, to ensure its safe and reliable operation.
editor by CX 2024-04-02
China Professional Single Acting Engineering Telescopic Oil Cylinders Hydraulic Cylinders vacuum pump booster
Product Description
Single Acting Engineering Telescopic Oil Cylinders Hydraulic Cylinders
Product Description
Work Press | 7/14/16/21/31.5MPa 37.5/63MPa Can be Customized |
Material | Aluminum,Cast Iron,45mnb Steel,Stainless Steel |
Bore Size | 120mm-380mm, Customizable |
Rod size | 90mm-350mm, Customizable |
Stage | 2~6 stages |
Paint Color | Red,Yellow,Blue,Brown,Customizable |
Mounting | Earring,Flange,Clevis.Foot,Trunnion,Customizable |
Warrenty | 18 months |
MOQ | 1 pcs |
Delivery Time | 7-15 Days,Also depands on specific demands |
Certification | ISO9001,CE, SGS |
Detailed Photos
Products Display:
Other related products
Quality Assurance
Inspection Type | Inspection Standard |
Raw Material Inspection | Before storage, QC takes the measurement of the raw materials. |
Process Material Inspection | During the production, QCs conduct a random inspection. Before the hydraulic cylinder parts transferred to the next process, QCs takes inspection. |
Final Function Testing | All the hydraulic cylinders take hydraulic function test |
Company Profile
About us:
Tianjian Hydraulic. is a leader in the engineering design and manufacture of high pressure hydraulic cylinders that are widely used in the fields of mining, metallurgy, construction machinery, marine, offshore, water engineering, wind power, hydraulic press, agricultural machinery, and so on.
The Tianjian team has almost 8 years experience delivering innovative and dependable solutions to meet OEM high pressure hydraulic cylinder needs.
If possible, when contact with us, please apply information as below :
Bore |
Rod |
Stroke |
Work Pressure |
Mounting |
Work environment |
|
|
|
|
|
|
Or you can offer us your sketch diagram or photos so that we could understand you exactly meaning, help us avoid mistakes.
And if you have samples, we can manufacture according to your samples after sending to us.
Welcome to our factory if you have any time.
Your satisfaction is our biggest motivation.
Now, you can contact with us for any question or inquiry.
Certifications
FAQ
1, What does your company do?
A: we are a supplier of high quality Hydraulic Cylinder for more than 8 years.
2, Are you a manufacture or a trading company?
A: We are a manufacturer. Warmly welcome to visit us!
3, What certificate do you have?
A: All our factories are ISO certificated. And our main suppliers of materials and parts are with CE, RoHS, and UL certificates.
4, How long is your delivery time?
A: The delivery time depends on different products and quantity. The cylinder usually need about 15~30 days.
5, Can you make parts as customer’s requirement or drawing?
A: Yes, we can OEM for you as your drawings. Our engineer also can give you professional support for technical suggestions.
6, What kind of payment terms do you accept?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages
before you pay the balance.
7, What is your warranty policy?
A: All our products are warranted for 1 full year from date of delivery against defects in materials and workmanship. This warranty does not cover parts that are worn out through the course of normal operation or are damaged through negligence. We serious remind that unclean hydraulic oil will definitely cause damage to your Hydraulic components. And this damage is not included in the warranty range. So we strongly suggest you to use new clean oil or make sure the system oil are clean when using our parts
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO9001 |
---|---|
Pressure: | Medium Pressure |
Work Temperature: | High Temperature |
Acting Way: | Single Acting |
Working Method: | Straight Trip |
Adjusted Form: | Regulated Type |
Samples: |
US$ 800/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What advantages do telescopic cylinders offer in heavy equipment?
Telescopic cylinders offer several advantages in heavy equipment applications. Here’s a detailed explanation:
Compact design:
Telescopic cylinders have a compact design that allows for a relatively small retracted length compared to their extended length. This compactness is advantageous in heavy equipment where space is limited. The reduced length enables the equipment to have a smaller footprint, making it easier to maneuver in confined areas and transport on trailers or trucks.
Extended reach:
Telescopic cylinders provide extended reach capabilities, which is beneficial in heavy equipment operations. The nested design allows for multiple stages to extend, enabling the cylinder to reach greater distances. This extended reach is particularly useful in applications where the equipment needs to lift or push loads over obstacles, reach into deep pits, or access elevated areas.
High force output:
Telescopic cylinders are capable of generating high force output, making them suitable for heavy lifting and pushing tasks. The hydraulic system used in telescopic cylinders allows for amplification of force through the application of hydraulic pressure. This high force output is advantageous in heavy equipment applications that require lifting and moving heavy loads or exerting significant pushing or pulling forces.
Customizable load capacity:
Telescopic cylinders offer load capacity customization. The modular nature of telescopic cylinders allows for the addition or removal of stages, which directly affects the cylinder’s load capacity. By adjusting the number of stages, the cylinder’s load capacity can be tailored to the specific requirements of the heavy equipment, ensuring optimal performance and safety.
Smooth operation:
Telescopic cylinders provide smooth and controlled operation. The hydraulic control system allows for precise control of the cylinder’s extension and retraction, ensuring smooth and synchronized movement of multiple stages. This smooth operation is important in heavy equipment applications where precise positioning, lifting, or pushing is required to avoid damage to the equipment or the load.
Durability and reliability:
Telescopic cylinders are built to withstand heavy-duty usage in demanding environments. They are designed using robust materials and undergo rigorous testing to ensure durability and reliability. The cylinders can withstand high load capacities, harsh operating conditions, and repetitive cycles, making them well-suited for heavy equipment applications that involve continuous and demanding operations.
Overall, telescopic cylinders offer advantages such as compact design, extended reach, high force output, customizable load capacity, smooth operation, durability, and reliability. These advantages contribute to improved efficiency, productivity, and performance of heavy equipment in various industries.
It’s important to consult the manufacturer’s specifications and guidelines to ensure the appropriate selection and application of telescopic cylinders in heavy equipment.
Can telescopic cylinders be used in forestry equipment for tree handling?
Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:
Tree felling and extraction:
Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.
Boom and arm extension:
In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.
Precise control:
Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.
Load handling and stacking:
Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.
Stability and balance:
Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.
Advantages of telescopic cylinders in forestry equipment:
Telescopic cylinders offer several advantages in tree handling applications:
- Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
- Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
- Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
- Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
- Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.
Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.
It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.
How does a telescopic cylinder differ from standard hydraulic cylinders?
A telescopic cylinder differs from standard hydraulic cylinders in several ways. Here’s a detailed explanation:
A telescopic cylinder, also known as a multistage cylinder or a sleeve cylinder, is specifically designed to provide an extended stroke length while maintaining a compact retracted length. In contrast, a standard hydraulic cylinder typically consists of a single-stage rod and barrel design. Here are the key differences between a telescopic cylinder and a standard hydraulic cylinder:
- Design and Structure: The most significant difference lies in the design and structure. A standard hydraulic cylinder has a single-stage design, meaning it consists of a single rod and barrel. On the other hand, a telescopic cylinder features multiple stages or sleeves nested inside one another. This nested structure allows for a longer stroke length while keeping the retracted length compact.
- Stroke Length: The stroke length of a telescopic cylinder can be significantly longer compared to a standard hydraulic cylinder. The ability to extend in multiple stages allows for a greater overall stroke length, making telescopic cylinders suitable for applications that require extended reach or height adjustment.
- Retracted Length: While a standard hydraulic cylinder has a fixed retracted length equal to its stroke length, a telescopic cylinder offers a compact retracted length. The nested design enables the stages to retract inside one another, reducing the overall length of the cylinder when not in use. This compact retracted length is advantageous in applications with space constraints.
- Load Capacity: Telescopic cylinders are designed to handle substantial loads while maintaining stability. The nested structure provides increased load-bearing capacity compared to standard hydraulic cylinders. The stages distribute the load evenly, ensuring efficient load transfer throughout the extended stroke.
- Complexity and Maintenance: Telescopic cylinders are generally more complex in design compared to standard hydraulic cylinders. They require precise alignment of the stages and may include additional components such as locking mechanisms or guiding systems. This complexity can affect maintenance requirements and may require specialized inspection and servicing procedures.
- Application: Telescopic cylinders are commonly used in applications that require extended reach or height adjustment, such as cranes, dump trucks, aerial platforms, and material handling equipment. Standard hydraulic cylinders, on the other hand, are versatile and widely used in various applications, including industrial machinery, construction equipment, and agricultural machinery.
Despite these differences, both telescopic cylinders and standard hydraulic cylinders are essential components in hydraulic systems. They both rely on hydraulic fluid to generate force and provide linear motion. The selection of the cylinder type depends on the specific requirements of the application, including stroke length, retracted length, load capacity, and available space.
It’s important to consult the manufacturer’s guidelines and specifications to ensure the proper selection, installation, and maintenance of the hydraulic cylinder based on the specific application requirements.
editor by CX 2024-03-30