Tag Archives: pump vacuum pump

China OEM China Factory Series High Quality Hydraulic Oil Cylinder with Favorable Price vacuum pump booster

Product Description

Cylinder Type: Mill type, head bolted, base welded
Structure: Piston type
Standard: GB/T15622-1995  JB/T15715-2000
Bore diameter: Up to 700mm
Rod diameter: Up to 500mm
Stroke length: Up to 10,000mm
Piston rod material: 20#,45#,40Cr, 27SiMn,30CrMo,35CrMo,42CrMo
Rod surface treatment: Hard chrome plated, chrome/nickel plated, ceramic coated
Tube material: 20#, 25#, 45#, 27SiMn,30CrMo,35CrMo,42CrMo
Tube surface painting: Colors as RAL, thickness according to request
Mounting type: Clevis, cross tube, flange, trunnion, tang, thread
Design pressure: Up to 40Mpa
Seal kits type: PARKER, MERKEL, HALLITE, NOK, TRELLEBORG

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: with or Without High and Low Pressure Switch
Work Temperature: Normal or Lower Temperature with Matched Sealing
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Switching or Regulated Type
Samples:
US$ 979/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?

Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:

1. Hydraulic Fluid and Pressure:

– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.

2. Piston and Cylinder Design:

– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.

3. Control Valves and Flow Control:

– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.

4. Cushioning and Damping:

– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.

5. Load Balancing:

– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.

6. Feedback and Control Systems:

– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.

7. Maintenance and Servicing:

– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.

In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.

hydraulic cylinder

Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating Loads

Hydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:

  1. Piston Design: The piston inside the hydraulic cylinder plays a crucial role in load control. It is typically equipped with seals and rings that prevent leakage of hydraulic fluid and ensure effective transfer of force. The piston design may incorporate features such as stepped or tandem pistons, which provide enhanced load-bearing capabilities and improved stability by distributing the load across multiple surfaces.
  2. Cylinder Cushioning: Hydraulic cylinders often incorporate cushioning mechanisms to minimize the impact and shock caused by fluctuating loads. Cushioning can be achieved through various methods, such as adjustable cushion screws, hydraulic cushioning valves, or elastomeric cushioning rings. These mechanisms slow down the piston’s movement near the end of the stroke, reducing the impact and preventing sudden stops that could lead to instability.
  3. Pressure Compensation: Fluctuating loads can result in pressure variations within the hydraulic system. To ensure stable performance, hydraulic cylinders are equipped with pressure compensation mechanisms. These mechanisms maintain a consistent pressure level in the system, regardless of load changes. Pressure compensation can be achieved through the use of pressure relief valves, compensating pistons, or pressure-compensated flow control valves.
  4. Flow Control: Hydraulic cylinders often incorporate flow control valves to regulate the speed of the cylinder’s movement. By controlling the flow rate of hydraulic fluid, the cylinder’s motion can be adjusted to match the changing load conditions. Flow control valves allow for smooth and controlled movement, preventing abrupt changes that could lead to instability.
  5. Feedback Systems: To ensure stable performance under fluctuating loads, hydraulic cylinders can be integrated with feedback systems. These systems provide real-time information on the cylinder’s position, velocity, and force. By continuously monitoring these parameters, the hydraulic system can make immediate adjustments to maintain stability and compensate for load fluctuations. Feedback systems can include position sensors, pressure sensors, or load sensors, depending on the specific application.
  6. Proper Sizing and Selection: Ensuring stable performance under fluctuating loads starts with proper sizing and selection of hydraulic cylinders. It is crucial to choose cylinders with appropriate bore size, rod diameter, and stroke length to match the anticipated load conditions. Oversized or undersized cylinders can lead to instability and reduced performance. Proper sizing also involves considering factors such as the required force, speed, and duty cycle of the application.

In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance.

hydraulic cylinder

What are the common signs of wear or leakage that indicate hydraulic cylinder issues?

Hydraulic cylinders are critical components in hydraulic systems, and wear or leakage can lead to performance issues and potential system failures. It is important to be aware of the common signs that indicate hydraulic cylinder problems. Here’s a detailed explanation of the common signs of wear or leakage that indicate hydraulic cylinder issues:

1. Fluid Leakage:

– Fluid leakage is one of the most obvious signs of hydraulic cylinder problems. If you notice hydraulic fluid leaking from the cylinder, it indicates a seal failure or damage to the cylinder. Leaking fluid may be visible around the rod, piston, or cylinder body. It is important to address fluid leakage promptly as it can lead to a loss of system efficiency, contamination of the surrounding environment, and potential damage to other system components.

2. Reduced Performance:

– Wear or internal damage to the hydraulic cylinder can result in reduced performance. You may notice a decrease in the cylinder’s force output, slower operation, or difficulty in extending or retracting the cylinder. Reduced performance can be indicative of worn seals, damaged piston or rod, internal leakage, or contamination within the cylinder. Any noticeable decrease in the cylinder’s performance should be inspected and addressed to prevent further damage or system inefficiencies.

3. Abnormal Noise or Vibrations:

– Unusual noise or vibrations during the operation of a hydraulic cylinder can indicate internal wear or damage. Excessive noise, knocking sounds, or vibrations that are not typical for the system may suggest problems such as worn bearings, misalignment, or loose internal components. These signs should be investigated to identify the source of the issue and take appropriate corrective measures.

4. Excessive Heat:

– Overheating of the hydraulic cylinder is another sign of potential issues. If the cylinder feels excessively hot to the touch during normal operation, it may indicate problems such as internal leakage, fluid contamination, or inadequate lubrication. Excessive heat can lead to accelerated wear, reduced efficiency, and overall system malfunctions. Monitoring the temperature of the hydraulic cylinder is important to detect and address potential problems.

5. External Damage:

– Physical damage to the hydraulic cylinder, such as dents, scratches, or bent rods, can contribute to wear and leakage issues. External damage can compromise the integrity of the cylinder, leading to fluid leakage, misalignment, or inefficient operation. Regular inspection of the cylinder’s external condition is essential to identify any visible signs of damage and take appropriate actions.

6. Seal Failure:

– Hydraulic cylinder seals are critical components that prevent fluid leakage and maintain system integrity. Signs of seal failure include fluid leakage, reduced performance, and increased friction during cylinder operation. Damaged or worn seals should be replaced promptly to prevent further deterioration of the cylinder’s performance and potential damage to other system components.

7. Contamination:

– Contamination within the hydraulic cylinder can cause wear, damage to seals, and overall system inefficiencies. Signs of contamination include the presence of foreign particles, debris, or sludge in the hydraulic fluid or visible damage to seals and other internal components. Regular fluid analysis and maintenance practices should be implemented to prevent contamination and address any signs of contamination promptly.

8. Irregular Seal Wear:

– Hydraulic cylinder seals can wear over time due to friction, pressure, and operating conditions. Irregular seal wear patterns, such as uneven wear or excessive wear in specific areas, may indicate misalignment or improper installation. Monitoring the condition of the seals during regular maintenance can help identify potential issues and prevent premature seal failure.

It is important to address these common signs of wear or leakage promptly to prevent further damage, ensure the optimal performance of hydraulic cylinders, and maintain the overall efficiency and reliability of the hydraulic system. Regular inspection, maintenance, and timely repairs or replacements of damaged components are key to mitigating hydraulic cylinder issues and maximizing system longevity.
China OEM China Factory Series High Quality Hydraulic Oil Cylinder with Favorable Price   vacuum pump booster	China OEM China Factory Series High Quality Hydraulic Oil Cylinder with Favorable Price   vacuum pump booster
editor by Dream 2024-04-26

China Best Sales CZPT Jinqi Mindman Hydraulic Clamping Cylinder Mhck-25/32/40/50/63-F Hydraulic Lever Cylinder vacuum pump booster

Product Description

Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.      

Q2: How to make payment? 
A2: Paypal, Western Union, Money Gram or T/T transfer 

Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.

Q4: What is the packing method? 
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.

Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.

Q6: What is the warranty
A6: 12 months against B/L date

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle the challenges of precise positioning and control?

Hydraulic cylinders are designed to handle the challenges of precise positioning and control with a combination of engineering principles and advanced control systems. These challenges often arise in applications where accurate and controlled movements are required, such as in industrial automation, construction, and material handling. Here’s a detailed explanation of how hydraulic cylinders overcome these challenges:

1. Fluid Power Control:

– Hydraulic cylinders utilize fluid power control to achieve precise positioning and control. The hydraulic system consists of a hydraulic pump, control valves, and hydraulic fluid. By regulating the flow of hydraulic fluid into and out of the cylinder, operators can control the speed, direction, and force exerted by the cylinder. The fluid power control allows for smooth and accurate movements, enabling precise positioning of the hydraulic cylinder and the attached load.

2. Control Valves:

– Control valves play a crucial role in handling the challenges of precise positioning and control. These valves are responsible for directing the flow of hydraulic fluid within the system. They can be manually operated or electronically controlled. Control valves allow operators to adjust the flow rate of the hydraulic fluid, controlling the speed of the cylinder’s movement. By modulating the flow, operators can achieve fine control over the positioning of the hydraulic cylinder, enabling precise and accurate movements.

3. Proportional Control:

– Hydraulic cylinders can be equipped with proportional control systems, which offer enhanced precision in positioning and control. Proportional control systems utilize electronic feedback and control algorithms to precisely regulate the flow and pressure of the hydraulic fluid. These systems provide accurate and proportional control over the movement of the hydraulic cylinder, allowing for precise positioning at various points along its stroke length. Proportional control enhances the cylinder’s ability to handle complex tasks that require precise movements and control.

4. Position Feedback Sensors:

– To achieve precise positioning, hydraulic cylinders often incorporate position feedback sensors. These sensors provide real-time information about the position of the cylinder’s piston rod. Common types of position feedback sensors include potentiometers, linear variable differential transformers (LVDTs), and magnetostrictive sensors. By continuously monitoring the position, the feedback sensors enable closed-loop control, allowing for accurate positioning and control of the hydraulic cylinder. The feedback information is used to adjust the flow of hydraulic fluid to achieve the desired position accurately.

5. Servo Control Systems:

– Advanced hydraulic systems employ servo control systems to handle the challenges of precise positioning and control. Servo control systems combine electronic control, position feedback sensors, and proportional control valves to achieve high levels of accuracy and responsiveness. The servo control system continuously compares the desired position with the actual position of the hydraulic cylinder and adjusts the flow of hydraulic fluid to minimize any positional error. This closed-loop control mechanism enables the hydraulic cylinder to maintain precise positioning and control, even under varying loads or external disturbances.

6. Integrated Automation:

– Hydraulic cylinders can be integrated into automated systems to achieve precise positioning and control. In such setups, the hydraulic cylinders are controlled by programmable logic controllers (PLCs) or other automation controllers. These controllers receive input signals from various sensors and use pre-programmed logic to command the hydraulic cylinder’s movements. The integration of hydraulic cylinders into automated systems allows for precise and repeatable positioning and control, enabling complex sequences of movements to be executed with high accuracy.

7. Advanced Control Algorithms:

– Advancements in control algorithms have also contributed to the precise positioning and control of hydraulic cylinders. These algorithms, such as PID (Proportional-Integral-Derivative) control, adaptive control, and model-based control, enable sophisticated control strategies to be implemented. These algorithms consider factors such as load variations, system dynamics, and environmental conditions to optimize the control of hydraulic cylinders. By employing advanced control algorithms, hydraulic cylinders can compensate for disturbances and achieve precise positioning and control over a wide range of operating conditions.

In summary, hydraulic cylinders overcome the challenges of precise positioning and control through the use of fluid power control, control valves, proportional control, position feedback sensors, servo control systems, integrated automation, and advanced control algorithms. By combining these elements, hydraulic cylinders can achieve accurate and controlled movements, enabling precise positioning and control in various applications. These capabilities are essential for industries that require high precision and repeatability in their operations, such as industrial automation, robotics, and material handling.

hydraulic cylinder

Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders

Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:

  1. Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
  2. Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
  3. Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
  4. Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
  5. Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.

In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.

hydraulic cylinder

Can you explain the role and significance of hydraulic cylinders in machinery?

Hydraulic cylinders play a crucial role in machinery across various industries. They are essential components that provide controlled and powerful linear motion, enabling the operation of heavy equipment and facilitating numerous tasks. The role and significance of hydraulic cylinders in machinery can be explained in detail as follows:

Role of Hydraulic Cylinders:

– Conversion of Hydraulic Energy: Hydraulic cylinders convert hydraulic energy, typically in the form of pressurized hydraulic fluid, into linear force and motion. This conversion allows machinery to perform tasks such as lifting, pushing, pulling, clamping, tilting, and controlling various mechanisms.

– Generation of Linear Motion: Hydraulic cylinders generate linear motion by utilizing the principles of Pascal’s law. When hydraulic fluid is directed into one side of the cylinder, it applies pressure on the piston, resulting in linear movement of the piston and the attached piston rod. This linear motion can be used to actuate other components within the machinery or directly perform the required task.

– Force Generation: Hydraulic cylinders are capable of generating high forces due to the hydraulic pressure applied to the piston. The force output of a hydraulic cylinder depends on the surface area of the piston and the pressure of the hydraulic fluid. This force allows machinery to exert significant power for lifting heavy loads, applying pressure, or overcoming resistance.

– Precise Control: Hydraulic cylinders offer precise control over the linear motion and force exerted. By regulating the flow of hydraulic fluid, the speed and direction of the cylinder’s movement can be accurately adjusted. This level of control is crucial in machinery that requires precise positioning, delicate movements, or synchronization of multiple cylinders.

– Integration with Hydraulic Systems: Hydraulic cylinders are integral parts of hydraulic systems used in machinery. They work in conjunction with hydraulic pumps, valves, and actuators to create a complete hydraulic circuit. This integration allows for efficient power transmission, control, and coordination of various machine functions.

Significance of Hydraulic Cylinders:

– Heavy Equipment Operation: Hydraulic cylinders are vital in heavy machinery used in construction, mining, agriculture, material handling, and other industries. They enable the lifting and movement of heavy loads, the operation of attachments, and the performance of tasks that require high force and precision.

– Versatility and Adaptability: Hydraulic cylinders are versatile components that can be designed and tailored to meet specific machinery requirements. They can be integrated into various types of equipment and customized based on factors such as force capacity, stroke length, speed, and mounting options. This adaptability makes hydraulic cylinders suitable for diverse applications.

– Durability and Reliability: Hydraulic cylinders are built to withstand rigorous operating conditions, including high pressures, heavy loads, and continuous use. They are designed with robust materials, precise machining, and effective sealing systems to ensure durability and reliability over extended periods of operation.

– Safety and Load Control: Hydraulic cylinders provide safe and controlled operation in machinery. They offer overload protection mechanisms, such as relief valves, to prevent damage caused by excessive force or pressure. Additionally, hydraulic cylinders allow for precise load control, minimizing the risk of accidents during lifting, lowering, or positioning of heavy loads.

– Compact Design: Hydraulic cylinders offer a high power-to-size ratio, allowing for compact machinery design. Their relatively small size compared to the forces they can generate makes them suitable for applications where space is limited or weight restrictions apply.

– Energy Efficiency: Hydraulic cylinders contribute to energy efficiency in machinery. The use of hydraulic systems allows for the transfer of power over long distances without significant power losses. Additionally, hydraulic cylinders can incorporate energy-saving features such as load-sensing technology and regenerative circuits, reducing energy consumption.

Overall, hydraulic cylinders play a vital role in machinery by providing controlled and powerful linear motion. Their significance lies in their ability to convert hydraulic energy, generate high forces, offer precise control, integrate with hydraulic systems, and facilitate the operation of heavy equipment across various industries. Hydraulic cylinders contribute to increased productivity, safety, and efficiency in machinery applications, making them indispensable components in modern-day engineering.

China Best Sales CZPT Jinqi Mindman Hydraulic Clamping Cylinder Mhck-25/32/40/50/63-F Hydraulic Lever Cylinder   vacuum pump booster	China Best Sales CZPT Jinqi Mindman Hydraulic Clamping Cylinder Mhck-25/32/40/50/63-F Hydraulic Lever Cylinder   vacuum pump booster
editor by Dream 2024-04-25

China Good quality High- Quality Customized Front-End Telescopic Hydraulic Cylinders for Dump Trucks vacuum pump engine

Product Description

Product Description

 Bore of cylinder’s first stage    Stroke  Upper mouting Upper mouting Mounting dimension Working pressure 
Diameter of the hole Deep Diameter of the hole Deep
5 84.00  1.63  1.50  2.00  7.00  41.09  2500
6 120.06  2.00  2.00  2.00  7.00  52.62  2500
7 120.00  2.00  2.00  2.00  8.25  53.12  2500
8.125 234.00  2.00  2.00  2.00  9.50  64.62  2500
9.375 235.00  2.00  2.00  2.00  10.88  65.44  2500

 

L2 L3 L4 L5 L6 ØA Fitting Workable container length   Rear suspension length  Lift angle   Lift capacity   Oil tank volume
65 360 60 325 1585 Ø60 G1 4700-5300 800 47-52° 43 80
65 360 60 325 1270 Ø60 G1 4700-5300 800 47-52° 31 80
65 360 60 325 1390 Ø60 G1 5300-6000 800 47-52° 36 80
65 360 60 325 1510 Ø60 G1 5800-6500 800 47-52° 36 80
65 360 60 325 1385 Ø60 G1 5300-5800 800 47-52° 53 80
65 360 60 325 1505 Ø60 G1 5800-6500 800 47-52° 53 100
65 360 60 325 1580 Ø60 G1 6200-6800 800 47-52° 58 100
65 360 60 325 1655 Ø60 G1 6600-7200 800 47-52° 58 100
65 360 60 325 1125 Ø60 G1 5000-5500 800 47-52° 46 80
65 360 60 325 1165 Ø60 G1 5300-6000 800 47-52° 46 80
65 360 60 325 1265 Ø60 G1 5800-6500 800 47-52° 49 80
65 360 60 325 1340 Ø60 G1 6200-6800 800 47-52° 49 80
65 360 60 325 1385 Ø60 G1 6600-7200 800 47-52° 49 80
65 360 65 325 1455 Ø60 G1 5600-6300 800 47-52° 66 120
65 360 65 325 1505 Ø60 G1 5800-6500 800 47-52° 66 120
65 360 65 325 1580 Ø60 G1 6200-6800 800 47-52° 70 120
65 360 65 325 1655 Ø60 G1 6600-7200 800 47-52° 70 120
65 360 65 325 1750 Ø60 G1 7200-8000 1000 47-52° 70 135
65 360 65 325 1270 Ø60 G1 7200-8000 1000 47-52° 49 120
65 360 65 325 1675 Ø65 G1 6600-7200 800 47-52° 92 165
65 360 65 325 1770 Ø65 G1 7200-8000 1000 47-52° 96 165
65 360 65 325 1870 Ø65 G1 8000-8500 1000 47-52° 96 185
65 360 65 325 1770 Ø65 G1 8700-9500 1000 47-52° 88 185

 

Company Profile

 

 

Certifications

 

Packaging & Shipping

FAQ

Q1: Can your cylinders with HYVA ones ?
      Yes, our cylinders can replace HYVA ones well, with same technical details and mounting sizes

Q2: What’s your cylinder’s advantages ?
      The cylinders are made under strictly quality control processing.
      All the raw materials and seals we used are all from world famous companies.
      Cost effective

Q3: When your company be established ?
      Our company be established in 1996, and we are professional for hydraulic cylinders for more than 25 years.
      And we had passed IATF 16949:2016 Quality control system.

Q4: How about the delivery time ?
       For samples about 20 days. And 15 to 30 days about mass orders.

Q5: How about the cylinder’s quality gurantee ?
      We have 1 year quality grantee of the cylinders.
      

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001, IATF 16949:2016
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

telescopic cylinder

How do telescopic cylinders handle variations in environmental conditions?

Telescopic cylinders are designed to handle variations in environmental conditions effectively. Here’s a detailed explanation:

Durable construction:

Telescopic cylinders are constructed with durable materials such as steel or high-strength alloys, which provide resistance to environmental elements. These materials are chosen for their ability to withstand harsh conditions, including temperature extremes, moisture, and exposure to chemicals or corrosive substances.

Sealing mechanisms:

Telescopic cylinders incorporate sealing mechanisms to protect the internal components from contaminants and maintain proper operation in different environments. The seals prevent the entry of dust, dirt, water, and other particles that could potentially damage the cylinder’s internal components or affect its performance. Seals also help retain the hydraulic fluid, ensuring optimal lubrication and preventing leakage.

Corrosion resistance:

Telescopic cylinders are often coated with protective finishes or treatments to enhance their corrosion resistance. These coatings, such as paint, powder coating, or specialized coatings like chrome plating, create a barrier between the cylinder’s surface and the surrounding environment, reducing the risk of corrosion. Corrosion-resistant materials and treatments are particularly crucial in outdoor or marine applications where exposure to moisture, saltwater, or chemicals is common.

Temperature considerations:

Telescopic cylinders are designed to handle variations in temperature. The materials used in their construction are selected to withstand both low and high temperature ranges. Additionally, the hydraulic fluid used in the cylinders is chosen based on its ability to maintain consistent performance across different temperature conditions. In extreme temperature environments, additional insulation or heating elements may be incorporated to ensure proper fluid viscosity and prevent freezing or overheating.

Environmental sealing:

In certain applications where telescopic cylinders are exposed to extreme environmental conditions, additional sealing measures may be implemented. Environmental seals are designed to provide extra protection against water, dust, or other contaminants that are prevalent in specific environments. These seals are typically more robust and durable to maintain the integrity of the cylinder in challenging conditions.

Regular maintenance:

To ensure optimal performance and longevity, regular maintenance is essential for telescopic cylinders. This includes inspecting and cleaning the cylinders, checking and replacing worn seals, monitoring fluid levels and quality, and addressing any signs of damage or wear. Maintenance intervals may vary depending on the operating conditions and manufacturer recommendations.

Overall, telescopic cylinders are engineered to handle variations in environmental conditions by incorporating durable construction, sealing mechanisms, corrosion resistance, temperature considerations, environmental sealing, and regular maintenance. These features contribute to the reliability, longevity, and performance of telescopic cylinders in diverse industrial applications.

Consulting with manufacturers or industry experts can provide further guidance on selecting telescopic cylinders that are suitable for specific environmental conditions.

telescopic cylinder

Can telescopic cylinders be used in forestry equipment for tree handling?

Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:

Tree felling and extraction:

Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.

Boom and arm extension:

In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.

Precise control:

Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.

Load handling and stacking:

Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.

Stability and balance:

Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.

Advantages of telescopic cylinders in forestry equipment:

Telescopic cylinders offer several advantages in tree handling applications:

  • Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
  • Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
  • Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
  • Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
  • Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.

Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.

telescopic cylinder

What are the components and design features of a telescopic cylinder?

A telescopic cylinder consists of various components and incorporates specific design features to enable its functionality and performance. Here’s a detailed explanation:

Components of a telescopic cylinder:

  • Stages or Sleeves: A telescopic cylinder comprises multiple stages or sleeves that are nested inside one another. These stages are usually cylindrical in shape and are made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application requirements.
  • Piston and Rod: Each stage of a telescopic cylinder has its own piston and rod assembly. The piston is located inside the stage and is connected to the rod, which extends through the center of the stage. The piston and rod assembly is responsible for generating the linear motion of each stage during extension and retraction.
  • Seals: Sealing elements, such as O-rings or lip seals, are used to ensure a hydraulic seal between the stages. These seals prevent leakage of hydraulic fluid and maintain pressure within each stage during operation. The seals also help to protect the internal components from contaminants.
  • Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
  • Guides and Bearings: To maintain proper alignment and minimize friction between the stages, telescopic cylinders may include guides and bearings. These components facilitate smooth extension and retraction of the stages and provide structural support.
  • Hydraulic Connections: Telescopic cylinders have hydraulic connections to supply hydraulic fluid for extension and retraction. These connections typically include ports or fittings for the inlet and outlet of hydraulic fluid. Flexible hydraulic hoses or tubing are used to connect the cylinder to the hydraulic system of the equipment.

Design features of a telescopic cylinder:

  • Nested Structure: The nested structure is a fundamental design feature of a telescopic cylinder. It allows the stages to extend and retract within one another, enabling a longer stroke length while maintaining a compact retracted length.
  • Articulation Capability: Some telescopic cylinders incorporate articulation capability, which allows the cylinder to adjust its angle or position relative to the equipment. This feature enhances the versatility of the cylinder and enables it to adapt to different mounting orientations and working conditions.
  • Internal Flow Paths: The design of a telescopic cylinder includes internal flow paths that facilitate the controlled flow of hydraulic fluid between the stages during extension and retraction. These flow paths ensure synchronized movement of the stages and contribute to the overall performance and stability of the cylinder.
  • Surface Treatment: The external surfaces of telescopic cylinders are often treated or coated to provide protection against corrosion, wear, and environmental elements. Common surface treatments include painting, powder coating, or electroplating.

These components and design features work together to enable the functionality, reliability, and performance of a telescopic cylinder. It’s important to consult the manufacturer’s guidelines and specifications for proper installation, operation, and maintenance of the telescopic cylinder based on the specific application requirements.

China Good quality High- Quality Customized Front-End Telescopic Hydraulic Cylinders for Dump Trucks   vacuum pump engine	China Good quality High- Quality Customized Front-End Telescopic Hydraulic Cylinders for Dump Trucks   vacuum pump engine
editor by Dream 2024-04-25

China Best Sales Multi Stages Telescopic Multistage Hydraulic Cylinder for Trailer Dump Truck Body Telescopic Cylinder vacuum pump design

Product Description

Specifications:                         

Product Name SGS Series Hydraulic Cylinder
Work Press 7/14/16/21/31.5MPa    
Material Aluminum, Cast Iron,45mnb Steel, Stainless Steel
Stage Up to 5 Stage
Bore Size 40mm–320mm, Customizable
Shaft Diameter 20mm–220mm, Customizable
Stroke Length 30mm–14100mm, Customizable
Rod Surface Hardness HRC48-54
Operating Temperature -40°C to +120 °C
Paint Color Black, Yellow, Blue, Brown, Customizable
Service OEM&ODM
Warranty 1 Year
MOQ 1 Piece
Delivery Time 7-15 Days, Also depending on specific demands
Certification ISO9001,CE
Capacity 50,000Pcs per year

Product Display:                     
Mounting:   
Working Flow: About Us   
Tongte designs and manufactures durable, heavy-duty hydraulic products and accessories and offers lifecycle services to them. We constantly develop our machine base and operations to meet customer-specific needs and remain leaders in the industry. Beyond all else, we want to be the trusted, groundbreaking partner our customers truly need.
In addition to the customized cylinders, CHINAMFG offers hydraulic power units, Electric-Hydraulic linear actuators, piston accumulators, system configurations, and versatile services such as repair and manufacturing services. The modern production facilities are located in HangZhou, ZheJiang (China) where production started in 2001. The core values of Tongke guiding its business strongly are commitment, sustainability, interaction, and customer-first.
We possess over 20 years of experience in the industry and extensive global market experience, our customers are located all over the world, and we truly commit to the customers’ needs – these are the success factors of our family-owned company. Our vision is to grow and expand the business further into global markets.
FAQ:                          
Q1: What does your company do?
A: we are a supplier of high-quality hydraulic products including Hydraulic Cylinders, Hydraulic Power packs, Hydraulic Linear, and other Hydraulic components.
Q2:Are you a manufacturer or trading company?
A: We are a manufacturer.
Q3:Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, and 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What is your warranty policy?
A: All our products are warranted for 1 full year from the date of delivery against defects in materials and workmanship. Each individual product will be strictly inspected on our factory QC Process
System before shipment. We also have a Customer Service team to respond to customers’ questions within 12 hours.  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

telescopic cylinder

How do telescopic cylinders handle variations in environmental conditions?

Telescopic cylinders are designed to handle variations in environmental conditions effectively. Here’s a detailed explanation:

Durable construction:

Telescopic cylinders are constructed with durable materials such as steel or high-strength alloys, which provide resistance to environmental elements. These materials are chosen for their ability to withstand harsh conditions, including temperature extremes, moisture, and exposure to chemicals or corrosive substances.

Sealing mechanisms:

Telescopic cylinders incorporate sealing mechanisms to protect the internal components from contaminants and maintain proper operation in different environments. The seals prevent the entry of dust, dirt, water, and other particles that could potentially damage the cylinder’s internal components or affect its performance. Seals also help retain the hydraulic fluid, ensuring optimal lubrication and preventing leakage.

Corrosion resistance:

Telescopic cylinders are often coated with protective finishes or treatments to enhance their corrosion resistance. These coatings, such as paint, powder coating, or specialized coatings like chrome plating, create a barrier between the cylinder’s surface and the surrounding environment, reducing the risk of corrosion. Corrosion-resistant materials and treatments are particularly crucial in outdoor or marine applications where exposure to moisture, saltwater, or chemicals is common.

Temperature considerations:

Telescopic cylinders are designed to handle variations in temperature. The materials used in their construction are selected to withstand both low and high temperature ranges. Additionally, the hydraulic fluid used in the cylinders is chosen based on its ability to maintain consistent performance across different temperature conditions. In extreme temperature environments, additional insulation or heating elements may be incorporated to ensure proper fluid viscosity and prevent freezing or overheating.

Environmental sealing:

In certain applications where telescopic cylinders are exposed to extreme environmental conditions, additional sealing measures may be implemented. Environmental seals are designed to provide extra protection against water, dust, or other contaminants that are prevalent in specific environments. These seals are typically more robust and durable to maintain the integrity of the cylinder in challenging conditions.

Regular maintenance:

To ensure optimal performance and longevity, regular maintenance is essential for telescopic cylinders. This includes inspecting and cleaning the cylinders, checking and replacing worn seals, monitoring fluid levels and quality, and addressing any signs of damage or wear. Maintenance intervals may vary depending on the operating conditions and manufacturer recommendations.

Overall, telescopic cylinders are engineered to handle variations in environmental conditions by incorporating durable construction, sealing mechanisms, corrosion resistance, temperature considerations, environmental sealing, and regular maintenance. These features contribute to the reliability, longevity, and performance of telescopic cylinders in diverse industrial applications.

Consulting with manufacturers or industry experts can provide further guidance on selecting telescopic cylinders that are suitable for specific environmental conditions.

telescopic cylinder

Can telescopic cylinders be used in aerial work platforms for extended reach?

Yes, telescopic cylinders are commonly used in aerial work platforms to achieve extended reach. Here’s a detailed explanation:

Increased working height:

Telescopic cylinders enable aerial work platforms to reach greater heights compared to other types of lifting mechanisms. The multi-stage design of telescopic cylinders allows for sequential extension, providing incremental increases in working height. This extended reach capability is crucial for accessing elevated areas such as construction sites, maintenance tasks, or elevated platforms.

Flexible reach adjustment:

Telescopic cylinders offer flexibility in adjusting the reach of aerial work platforms. By extending or retracting the cylinders, operators can modify the platform’s horizontal reach according to the specific job requirements. This flexibility allows for precise positioning of the platform, ensuring safe and efficient access to work areas at varying distances from the base.

Stability and load capacity:

Telescopic cylinders contribute to the stability and load capacity of aerial work platforms during extended reach operations. The cylinders provide structural support and help distribute the weight of the platform and the load being lifted. This load distribution ensures stability, minimizes the risk of tipping or tilting, and allows for safe operation even at maximum reach.

Controlled movements:

Telescopic cylinders enable controlled and smooth movements of aerial work platforms. The hydraulic control system regulates the extension and retraction of the cylinders, allowing for precise control over the platform’s vertical and horizontal motions. This controlled movement enhances operator safety, minimizes vibrations, and enables accurate positioning of the platform during extended reach tasks.

Compact design:

Telescopic cylinders offer a compact design that allows for efficient integration into aerial work platforms. The cylinders can be retracted when not in use, minimizing the space occupied by the lifting mechanism. This compactness allows for better maneuverability, improved accessibility in confined spaces, and efficient transportation of the aerial work platform.

Integration with other platform features:

Telescopic cylinders can be integrated with other features of aerial work platforms to enhance functionality. For example, they can be combined with articulating booms or rotating platforms to achieve versatile reach and positioning capabilities. This integration expands the range of applications for aerial work platforms, enabling them to navigate obstacles, reach over obstacles, or access difficult-to-reach areas.

Advantages of telescopic cylinders in aerial work platforms:

Telescopic cylinders offer several advantages when used in aerial work platforms for extended reach:

  • Increased working height for accessing elevated areas
  • Flexible reach adjustment for precise positioning
  • Stability and load capacity during extended reach
  • Controlled movements for operator safety
  • Compact design for maneuverability and transportation
  • Integration with other platform features for enhanced functionality

Overall, telescopic cylinders are a reliable and efficient choice for achieving extended reach in aerial work platforms. Their ability to increase working height, provide flexibility in reach adjustment, ensure stability, enable controlled movements, offer a compact design, and integrate with other platform features makes them well-suited for a wide range of aerial work applications.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in aerial work platforms.

telescopic cylinder

How does a telescopic cylinder handle variations in extension and retraction?

A telescopic cylinder is designed to handle variations in extension and retraction through its inherent structure and hydraulic system. Here’s a detailed explanation:

Handling variations in extension:

When extending a telescopic cylinder, each stage or sleeve extends successively, one inside the other, to achieve the desired stroke length. This nested structure allows for incremental extension, providing flexibility in adapting to different extension requirements. The hydraulic system supplies pressurized fluid to each stage’s piston, generating the necessary force for extension. The internal flow paths in the cylinder ensure synchronized movement of the stages, allowing for controlled and precise extension.

Handling variations in retraction:

During retraction, the telescopic cylinder stages retract in the reverse order of extension. The hydraulic system controls the flow of fluid to each stage, allowing for controlled retraction. The nested structure of the cylinder ensures that each stage retracts smoothly inside the preceding stage. The hydraulic pressure and flow are regulated to prevent rapid or uncontrolled retraction, ensuring safe and stable operation.

Compensating for variations:

Telescopic cylinders are designed to compensate for variations in extension and retraction through their hydraulic control systems. The hydraulic system can be adjusted to vary the flow rate, pressure, or force applied to each stage, allowing for fine-tuning and accommodating different extension and retraction requirements. Additionally, the locking mechanisms incorporated in telescopic cylinders help maintain the extended position securely, compensating for external forces or variations in loads.

Overall, the nested structure, hydraulic system, and locking mechanisms of telescopic cylinders provide the necessary flexibility and control to handle variations in extension and retraction. This enables the cylinders to adapt to different operating conditions, loads, and stroke length requirements in various applications.

It’s important to follow the manufacturer’s guidelines and recommendations for proper operation, maintenance, and adjustment of telescopic cylinders to ensure their reliable and safe performance.

China Best Sales Multi Stages Telescopic Multistage Hydraulic Cylinder for Trailer Dump Truck Body Telescopic Cylinder   vacuum pump design		China Best Sales Multi Stages Telescopic Multistage Hydraulic Cylinder for Trailer Dump Truck Body Telescopic Cylinder   vacuum pump design
editor by Dream 2024-04-25

China factory Pneumatic Actuators Su Series Airtac Telescopic Standard Pneumatic Air Cylinder vacuum pump adapter

Product Description

Pneumatic Actuators Su Series Airtac Telescopic Standard Pneumatic Air
Cylinder

 

 

 

Other Popular Models:

Why choose us?

1: Various style of completely series pneumatic products for you to choose.
2: High quality and competitive price,100% tested before shipment.
3: Sample order & small quantity order is accepted.
4: Large stock & fast shipment.
5: Factory location near by shipment port,convenient transportation and low cost.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Aluminum
Usage: Print, Semiconductor, Automation and Control, Robot
Structure: Series Cylinder
Power: Pneumatic
Standard: Standard, Nonstandard
Pressure Direction: Double-acting Cylinder
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

telescopic cylinder

How do telescopic cylinders contribute to efficient and controlled extension and retraction?

Telescopic cylinders play a crucial role in enabling efficient and controlled extension and retraction. Here’s a detailed explanation:

Nested design:

The nested design of telescopic cylinders, with multiple stages or sleeves that retract inside one another, allows for efficient extension and retraction. Each stage extends or retracts in a synchronized manner, contributing to smooth and controlled movement. The nested structure also enables compact storage when the cylinder is retracted, optimizing space utilization.

Hydraulic control system:

The hydraulic control system is a key component that enables efficient and controlled extension and retraction of telescopic cylinders. It utilizes hydraulic fluid and pressure to drive the cylinder’s movement. By regulating the flow of hydraulic fluid to each stage, the extension and retraction speed can be precisely controlled. This hydraulic control system ensures synchronized movement of the stages and allows for gradual and controlled extension and retraction.

Valve and cylinder design:

Telescopic cylinders incorporate specific valve and cylinder designs to facilitate efficient and controlled extension and retraction. Flow control valves, such as flow restrictors or throttle valves, are often used to regulate the flow rate of hydraulic fluid to each stage. These valves help manage the speed of extension and retraction, preventing sudden or uncontrolled movements. The cylinder design, including the bore size and rod diameter, is carefully engineered to optimize the balance between extension/retraction speed and force output.

Pressure relief and damping:

To further enhance controlled extension and retraction, telescopic cylinders may incorporate pressure relief and damping mechanisms. Pressure relief valves help prevent over-pressurization of the hydraulic system, ensuring that the cylinder operates within safe limits. Damping devices, such as hydraulic cushions or shock absorbers, can be integrated to dampen the impact or vibrations during extension and retraction, promoting smoother and more controlled movement.

Load-specific adjustments:

Telescopic cylinders can be adjusted to accommodate different load requirements, contributing to efficient and controlled extension and retraction. By adding or removing stages or adjusting the hydraulic pressure, operators can adapt the cylinder’s performance to match the specific load conditions. This customization ensures optimal extension and retraction characteristics for different applications and load capacities.

Overall, the nested design, hydraulic control system, valve and cylinder design, pressure relief mechanisms, and load-specific adjustments all work together to enable telescopic cylinders to contribute to efficient and controlled extension and retraction. These features ensure smooth operation, precise positioning, and safe handling of heavy loads in various industrial applications.

Consulting the manufacturer’s documentation and guidelines is important for understanding the specific capabilities and limitations of telescopic cylinders in terms of extension and retraction.

telescopic cylinder

Can telescopic cylinders be used in agricultural machinery for various tasks?

Yes, telescopic cylinders are widely used in agricultural machinery for various tasks. Here’s a detailed explanation:

Versatile applications:

Telescopic cylinders offer versatility and are suitable for a wide range of tasks in agricultural machinery. They are commonly employed in equipment such as tractors, harvesters, sprayers, loaders, and tillers.

Lifting and lowering:

Telescopic cylinders are utilized for lifting and lowering applications in agricultural machinery. They provide the necessary force to raise and lower attachments such as loader buckets, tillage implements, or harvest platforms. The telescopic cylinder’s design allows for efficient force transmission, enabling smooth and controlled movement.

Reach extension:

Telescopic cylinders are valuable for extending the reach of agricultural machinery. For example, in a harvester, telescopic cylinders can extend the reach of the harvesting arm, allowing operators to access crops in a broader area. This extension capability increases efficiency and productivity by reducing the need for repositioning the machinery frequently.

Adjustable working height:

Telescopic cylinders are employed in agricultural machinery to provide adjustable working heights. For instance, in sprayers or spreaders, telescopic cylinders can adjust the height of the booms or spreading mechanisms, allowing for precise application of fertilizers, pesticides, or seeds.

Folding and unfolding:

Telescopic cylinders are used to facilitate folding and unfolding actions in agricultural machinery. This is particularly useful for equipment that needs to be transported or stored in compact configurations. For example, telescopic cylinders can fold the wings of a tillage implement for easy transport on roads or through narrow gateways.

Stabilization and leveling:

Telescopic cylinders contribute to the stabilization and leveling of agricultural machinery. They are employed in tasks such as adjusting the height and angle of plows, cultivators, or balers to ensure proper ground engagement and uniform performance.

Advantages of telescopic cylinders in agricultural machinery:

Telescopic cylinders offer several advantages in agricultural machinery:

  • Versatility: Telescopic cylinders can be used for various tasks, providing flexibility and adaptability in agricultural operations.
  • Efficient force transmission: The telescopic design allows for direct and efficient force transmission, maximizing the equipment’s lifting and operational capabilities.
  • Precise control: Telescopic cylinders enable precise control over movements, allowing for accurate positioning and improved productivity.
  • Space optimization: Telescopic cylinders contribute to space optimization by enabling folding or compact configurations, facilitating transportation and storage of agricultural machinery.

Overall, telescopic cylinders are valuable components in agricultural machinery, offering versatility, efficient force transmission, precise control, and space optimization. They enhance the functionality and productivity of agricultural equipment across various tasks and applications.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in agricultural machinery.

telescopic cylinder

Can you explain the purpose and role of telescopic cylinders in machinery?

Telescopic cylinders play a crucial role in various machinery and equipment applications. Here’s a detailed explanation:

Purpose of telescopic cylinders:

Telescopic cylinders are primarily used when an extended stroke length is required while maintaining a compact retracted length. They enable machinery and equipment to achieve extended reach, height adjustment, or lifting capabilities without increasing the overall size or footprint of the cylinder. The purpose of telescopic cylinders is to provide efficient and reliable linear motion in applications that demand long stroke lengths.

Role of telescopic cylinders in machinery:

  • Material Handling: Telescopic cylinders are extensively used in material handling machinery, such as cranes, forklifts, and loaders. They enable the extension and retraction of booms, arms, or lifting mechanisms, allowing operators to reach higher or farther to handle and transport materials with ease.
  • Dump Trucks and Trailers: Telescopic cylinders are commonly employed in dump trucks and trailers for the tilting and unloading of cargo or bulk materials. The extendable stroke of the cylinder raises the bed or container to dump the contents, enabling efficient unloading and reducing manual labor.
  • Aerial Platforms: Telescopic cylinders are essential components in aerial work platforms, such as cherry pickers or scissor lifts. They facilitate the vertical movement and height adjustment of the platform, allowing operators to access elevated work areas safely.
  • Construction Equipment: Telescopic cylinders are used in various construction equipment, including excavators, backhoes, and telescopic handlers. They provide the necessary extension and retraction for the boom, arm, or bucket, enabling digging, lifting, and reaching capabilities in construction and earthmoving applications.
  • Mobile Equipment: Telescopic cylinders are utilized in mobile equipment, such as telescopic cranes and mobile cranes. They enable the extension and retraction of the boom sections, allowing for increased reach and lifting capacities in lifting and construction operations.
  • Specialized Machinery: Telescopic cylinders find application in specialized machinery, such as fire truck aerial ladders, telescopic masts, or telescopic booms in industrial and military equipment. They provide the required extension and retraction for specific tasks, such as firefighting, surveillance, or equipment deployment.

The role of telescopic cylinders in machinery is to provide precise and controlled linear motion, enabling the equipment to perform specific tasks with extended reach, height adjustment, or lifting capabilities. They contribute to the efficiency, versatility, and productivity of machinery in various industries.

It’s important to ensure proper selection, installation, and maintenance of telescopic cylinders based on the specific machinery requirements and manufacturer’s guidelines to ensure safe and reliable operation.

China factory Pneumatic Actuators Su Series Airtac Telescopic Standard Pneumatic Air Cylinder   vacuum pump adapter	China factory Pneumatic Actuators Su Series Airtac Telescopic Standard Pneumatic Air Cylinder   vacuum pump adapter
editor by Dream 2024-04-25

China manufacturer Factory Direct High Quality Telescopic Hydraulic Cylinder vacuum pump belt

Product Description

Product Description

Renewable energy hydraulic cylinder:

HETLOCK comply with development and demand of the times. We are further study in the field of renewable energy. Has been successfully to entered many customer in the field of wind power.
And reference to bridge jack-up experience of rise and fall. Creatively to installed the hydraulic valve into the hydraulic cylinder directly. Improve the stability when hydraulic cylinder ruining. And to avoid the hydraulic cylinder suddenly fall off due to tube crack.

Our products have applications in:

  • Wind energy;
  • Nuclear energy;
  • Solar Thermal energy;
  • Marine energy
  • Etc.

Product Parameters

Material Carbon steel, Alloy steel, Stainless steel
Honed tube 20-2500mm, Heat treatment, honing, rolling
Piston rod 10-2000mm ,tempering, plated nickel, Chromium or ceramic
Working Pressure 5-300Mpa
Seals Parker,Merkel,Hallite
Technology Bosch CHINAMFG and Parker
Coating Sandblasting, primer, middle paint,  finish paint
Temperature range -40ºC to +300ºC
Work medium Hydraulic Oil 
Piston speed maximum 2m/s
Mounting style Earrings, flange, foot mounting, screw thread.

Product Application

Company Show

HETLOCK is a professional manufacturer of hydraulic cylinders in China, Founded in 1998, located in the international city of ZheJiang . Our plant is nearly 20000 square meter& We have 135 Employees including 11 experienced engineers and technical staff,More than 1800 type of hydraulic cylinder designed in every year. We can produce various kinds of hydraulic cylinders according to customer requirements.
The inside diameter of hydraulic cylinders can achieve the maximum 2500mm;
The hydraulic cylinders operating pressure can achieve the maximum 300MPa.

FAQ

Q1:Are you a manufacturer or trading company?
A: We are a manufacturer.

Q2: How many years of production experience do you have?
A: We have over 20 years of production experience.

Q3: Can it be customized?
A: Both standard and non-standard products can be customized.

Q4: How to ensure product quality?
A: We strictly follow the quality process for production and 100% inspection of each batch of products.

Q5: What services can you provide?
A: According to customer requirements, we can provide a one-stop solution from design, production, and delivery to meet their needs.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Customization:
Available

|

telescopic cylinder

What safety considerations are important when using machinery with telescopic cylinders?

When using machinery with telescopic cylinders, several safety considerations should be taken into account. Here’s a detailed explanation:

Operator training and awareness:

Proper training and awareness are crucial for operators working with machinery equipped with telescopic cylinders. Operators should receive comprehensive training on the safe operation of the machinery, including the correct use of telescopic cylinders. They should be familiar with the controls, safety features, and best practices to ensure their own safety and the safety of others in the vicinity.

Regular inspection and maintenance:

Regular inspection and maintenance of telescopic cylinders are essential for ensuring safe operation. Cylinders should be inspected for signs of wear, damage, or leakage. Any issues should be addressed promptly to prevent potential failures or accidents. Lubrication, if required, should be performed according to the manufacturer’s recommendations.

Proper load capacity and stability:

It is important to ensure that the machinery and telescopic cylinders are used within their specified load capacity. Exceeding the load capacity can lead to instability, loss of control, or structural failure. Proper weight distribution and secure attachment of loads are also critical to maintaining stability during operation.

Safe work environment:

Creating a safe work environment is essential when using machinery with telescopic cylinders. This includes maintaining clear and unobstructed pathways for the machinery’s movement, removing potential hazards, and implementing appropriate safety measures such as barriers, signage, or warning systems to prevent unauthorized access or accidental contact with the machinery or its cylinders.

Emergency stop and shutdown procedures:

Emergency stop and shutdown procedures should be clearly communicated to operators. They should be trained on how to quickly and effectively stop the machinery’s operation in case of an emergency or when a safety hazard is detected. These procedures should be regularly reviewed and practiced to ensure a prompt response in critical situations.

Proper guarding and protection:

Telescopic cylinders should be adequately guarded to prevent accidental contact and potential injuries. Guarding may include physical barriers, shields, or sensors that detect the presence of personnel or objects in the cylinder’s path. Additionally, operators should wear appropriate personal protective equipment (PPE) as recommended for the specific task and working environment.

Compliance with regulations and standards:

It is important to ensure compliance with relevant regulations and safety standards when using machinery with telescopic cylinders. These regulations and standards may address aspects such as design, installation, operation, maintenance, and inspection of the machinery and its components. Adhering to these requirements helps mitigate risks and promotes a safe working environment.

Regular risk assessments:

Regular risk assessments should be conducted to identify and address potential hazards associated with the machinery and telescopic cylinders. This includes assessing risks related to operation, maintenance, equipment failure, environmental conditions, and human factors. Mitigation measures should be implemented based on the findings of the risk assessment.

Overall, safety considerations when using machinery with telescopic cylinders involve operator training, regular inspection and maintenance, load capacity and stability, safe work environment, emergency procedures, guarding and protection, compliance with regulations, and regular risk assessments. By addressing these considerations, the risks associated with operating machinery with telescopic cylinders can be minimized, promoting a safer working environment.

It’s important to consult the machinery manufacturer’s guidelines, safety manuals, and applicable regulations to ensure comprehensive understanding and implementation of safety practices.

telescopic cylinder

How do telescopic cylinders contribute to precise reach and manipulation?

Telescopic cylinders play a crucial role in enabling precise reach and manipulation in various applications. Here’s a detailed explanation:

Extended reach:

Telescopic cylinders allow for extended reach in equipment such as cranes, excavators, booms, and material handling machinery. The nested design of telescopic cylinders, with multiple stages that retract inside one another, enables the equipment to achieve a longer reach when required. By extending the telescopic cylinder, operators can access objects or work areas that are located at a distance.

Precise positioning:

Telescopic cylinders provide precise positioning capabilities, allowing operators to manipulate objects with accuracy. The hydraulic control system regulates the extension and retraction of each stage of the cylinder, enabling smooth and controlled movement. This precise control is essential in applications that require accurate placement or manipulation of objects, such as in construction, manufacturing, or material handling.

Load handling:

Telescopic cylinders contribute to precise load handling by providing the necessary force and control. The cylinders are designed to handle heavy loads and can exert the required power to lift, lower, or manipulate objects with precision. The hydraulic control system allows operators to adjust the speed and movement of the telescopic cylinder, ensuring safe and controlled load handling.

Adaptability:

Telescopic cylinders offer adaptability in reaching and manipulating objects in various environments. Their nested design allows for compact retraction, making them suitable for applications with limited space. The ability to extend and retract the telescopic cylinder provides flexibility in adjusting the reach and adapting to different working conditions.

Support for attachments:

Telescopic cylinders often support attachments or tools that enhance reach and manipulation capabilities. For example, in excavators, telescopic cylinders are used to extend the boom or arm, while additional attachments such as buckets or grabs facilitate precise material handling or excavation tasks.

Overall, telescopic cylinders contribute to precise reach and manipulation by offering extended reach, precise positioning, load handling capabilities, adaptability, and support for attachments. Their hydraulic control system and nested design enable operators to achieve accurate and controlled movements, enhancing productivity and efficiency in various applications.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the telescopic cylinder’s capabilities, operating parameters, and recommended maintenance practices to ensure optimal performance and safety.

telescopic cylinder

Can telescopic cylinders be customized for specific machinery and equipment?

Yes, telescopic cylinders can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation:

Customizable stroke length:

Telescopic cylinders can be designed and manufactured with customized stroke lengths to suit the specific needs of machinery and equipment. The stroke length determines the maximum extension or retraction distance of the cylinder and can be tailored to match the required range of motion for a particular application.

Adjustable force and speed:

The hydraulic control system of telescopic cylinders allows for adjustability in terms of force and speed. The system can be configured to provide the necessary force output for the machinery or equipment, ensuring optimal performance. Additionally, the speed of extension and retraction can be adjusted to match the operational requirements, enabling precise and efficient operation.

Mounting options:

Telescopic cylinders can be customized with different mounting options to facilitate easy integration with specific machinery and equipment. Mounting configurations can vary depending on factors such as available space, mounting orientation, and compatibility with existing systems. Manufacturers can provide various mounting solutions to ensure seamless installation.

Sealing and protection:

In certain applications, telescopic cylinders may require specialized sealing and protection features. Manufacturers can customize the cylinder design to incorporate seals and protective coatings that are suitable for the working environment. This customization helps enhance the longevity and reliability of the cylinder, especially in harsh operating conditions.

Material selection:

Telescopic cylinders can be manufactured using different materials to meet specific machinery and equipment requirements. Material selection depends on factors such as load capacity, operating temperature, corrosion resistance, and weight considerations. Manufacturers can offer material options to ensure the cylinder’s compatibility and performance in the intended application.

Integration with control systems:

Telescopic cylinders can be integrated with control systems and sensors to enable advanced functionality and automation. Customization may involve incorporating position sensors, pressure sensors, or other feedback devices to provide real-time data and enhance the overall performance and safety of the machinery or equipment.

Overall, telescopic cylinders can be customized in terms of stroke length, force and speed adjustability, mounting options, sealing and protection features, material selection, and integration with control systems. This customization allows telescopic cylinders to be tailored to the specific requirements of machinery and equipment, ensuring optimal performance and functionality.

It’s important to collaborate with the manufacturer or a qualified expert to determine the appropriate customization options and ensure compliance with relevant industry standards and regulations.

China manufacturer Factory Direct High Quality Telescopic Hydraulic Cylinder   vacuum pump belt	China manufacturer Factory Direct High Quality Telescopic Hydraulic Cylinder   vacuum pump belt
editor by Dream 2024-04-25

China factory USA Standard Telescopic Hydraulic Cylinders for Dump Truck vacuum pump electric

Product Description

 

Company Profile

 

 

Certifications

 

Packaging & Shipping

FAQ

Q1: Can your cylinders with HYVA ones ?
      Yes, our cylinders can replace HYVA ones well, with same technical details and mounting sizes

Q2: What’s your cylinder’s advantages ?
      The cylinders are made under strictly quality control processing.
      All the raw materials and seals we used are all from world famous companies.
      Cost effective

Q3: When your company be established ?
      Our company be established in 1996, and we are professional for hydraulic cylinders for more than 25 years.
      And we had passed IATF 16949:2016 Quality control system.

Q4: How about the delivery time ?
       For samples about 20 days. And 15 to 30 days about mass orders.

Q5: How about the cylinder’s quality gurantee ?
      We have 1 year quality grantee of the cylinders.
      

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001, IATF 16949:2016
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

telescopic cylinder

What advantages do telescopic cylinders offer in heavy equipment?

Telescopic cylinders offer several advantages in heavy equipment applications. Here’s a detailed explanation:

Compact design:

Telescopic cylinders have a compact design that allows for a relatively small retracted length compared to their extended length. This compactness is advantageous in heavy equipment where space is limited. The reduced length enables the equipment to have a smaller footprint, making it easier to maneuver in confined areas and transport on trailers or trucks.

Extended reach:

Telescopic cylinders provide extended reach capabilities, which is beneficial in heavy equipment operations. The nested design allows for multiple stages to extend, enabling the cylinder to reach greater distances. This extended reach is particularly useful in applications where the equipment needs to lift or push loads over obstacles, reach into deep pits, or access elevated areas.

High force output:

Telescopic cylinders are capable of generating high force output, making them suitable for heavy lifting and pushing tasks. The hydraulic system used in telescopic cylinders allows for amplification of force through the application of hydraulic pressure. This high force output is advantageous in heavy equipment applications that require lifting and moving heavy loads or exerting significant pushing or pulling forces.

Customizable load capacity:

Telescopic cylinders offer load capacity customization. The modular nature of telescopic cylinders allows for the addition or removal of stages, which directly affects the cylinder’s load capacity. By adjusting the number of stages, the cylinder’s load capacity can be tailored to the specific requirements of the heavy equipment, ensuring optimal performance and safety.

Smooth operation:

Telescopic cylinders provide smooth and controlled operation. The hydraulic control system allows for precise control of the cylinder’s extension and retraction, ensuring smooth and synchronized movement of multiple stages. This smooth operation is important in heavy equipment applications where precise positioning, lifting, or pushing is required to avoid damage to the equipment or the load.

Durability and reliability:

Telescopic cylinders are built to withstand heavy-duty usage in demanding environments. They are designed using robust materials and undergo rigorous testing to ensure durability and reliability. The cylinders can withstand high load capacities, harsh operating conditions, and repetitive cycles, making them well-suited for heavy equipment applications that involve continuous and demanding operations.

Overall, telescopic cylinders offer advantages such as compact design, extended reach, high force output, customizable load capacity, smooth operation, durability, and reliability. These advantages contribute to improved efficiency, productivity, and performance of heavy equipment in various industries.

It’s important to consult the manufacturer’s specifications and guidelines to ensure the appropriate selection and application of telescopic cylinders in heavy equipment.

telescopic cylinder

How do telescopic cylinders handle variations in cylinder size and capacity?

Telescopic cylinders are designed to handle variations in cylinder size and capacity effectively. Here’s a detailed explanation:

Modular design:

Telescopic cylinders feature a modular design that allows for flexibility in cylinder size and capacity. They consist of multiple stages or sections that retract inside one another, similar to a telescope. The number of stages can vary depending on the desired extended length and capacity of the cylinder. This modular design enables telescopic cylinders to be customized according to specific requirements.

Variable stroke length:

Telescopic cylinders offer the advantage of variable stroke length. The stroke length refers to the distance the cylinder can extend and retract. By adjusting the stroke length, the effective size and capacity of the telescopic cylinder can be modified. This flexibility allows for accommodating variations in the size and capacity requirements of different applications.

Increased capacity with additional stages:

Telescopic cylinders can handle variations in capacity by adding more stages to the cylinder. Each stage contributes to the overall capacity of the cylinder. By including additional stages, the cylinder’s capacity can be increased to handle higher loads or operate in more demanding conditions. This scalability makes telescopic cylinders suitable for a wide range of applications with varying capacity needs.

Proportional force distribution:

Telescopic cylinders distribute the applied force proportionally across the stages. As the cylinder extends, each stage contributes to supporting the load and transmitting the force. The force distribution ensures that the load is evenly distributed among the stages, allowing the cylinder to handle variations in capacity effectively.

Hydraulic control system:

Telescopic cylinders rely on a hydraulic control system for operation. The system allows for precise control over the extension and retraction of each stage. By adjusting the hydraulic pressure and flow, operators can regulate the movement and force exerted by the cylinder, ensuring optimal performance and capacity utilization.

Overall, telescopic cylinders handle variations in cylinder size and capacity through their modular design, variable stroke length, ability to add stages for increased capacity, proportional force distribution, and hydraulic control system. These features make telescopic cylinders adaptable to different applications and enable them to effectively handle varying size and capacity requirements.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the size, capacity, and operational considerations of telescopic cylinders.

telescopic cylinder

What are the components and design features of a telescopic cylinder?

A telescopic cylinder consists of various components and incorporates specific design features to enable its functionality and performance. Here’s a detailed explanation:

Components of a telescopic cylinder:

  • Stages or Sleeves: A telescopic cylinder comprises multiple stages or sleeves that are nested inside one another. These stages are usually cylindrical in shape and are made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application requirements.
  • Piston and Rod: Each stage of a telescopic cylinder has its own piston and rod assembly. The piston is located inside the stage and is connected to the rod, which extends through the center of the stage. The piston and rod assembly is responsible for generating the linear motion of each stage during extension and retraction.
  • Seals: Sealing elements, such as O-rings or lip seals, are used to ensure a hydraulic seal between the stages. These seals prevent leakage of hydraulic fluid and maintain pressure within each stage during operation. The seals also help to protect the internal components from contaminants.
  • Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
  • Guides and Bearings: To maintain proper alignment and minimize friction between the stages, telescopic cylinders may include guides and bearings. These components facilitate smooth extension and retraction of the stages and provide structural support.
  • Hydraulic Connections: Telescopic cylinders have hydraulic connections to supply hydraulic fluid for extension and retraction. These connections typically include ports or fittings for the inlet and outlet of hydraulic fluid. Flexible hydraulic hoses or tubing are used to connect the cylinder to the hydraulic system of the equipment.

Design features of a telescopic cylinder:

  • Nested Structure: The nested structure is a fundamental design feature of a telescopic cylinder. It allows the stages to extend and retract within one another, enabling a longer stroke length while maintaining a compact retracted length.
  • Articulation Capability: Some telescopic cylinders incorporate articulation capability, which allows the cylinder to adjust its angle or position relative to the equipment. This feature enhances the versatility of the cylinder and enables it to adapt to different mounting orientations and working conditions.
  • Internal Flow Paths: The design of a telescopic cylinder includes internal flow paths that facilitate the controlled flow of hydraulic fluid between the stages during extension and retraction. These flow paths ensure synchronized movement of the stages and contribute to the overall performance and stability of the cylinder.
  • Surface Treatment: The external surfaces of telescopic cylinders are often treated or coated to provide protection against corrosion, wear, and environmental elements. Common surface treatments include painting, powder coating, or electroplating.

These components and design features work together to enable the functionality, reliability, and performance of a telescopic cylinder. It’s important to consult the manufacturer’s guidelines and specifications for proper installation, operation, and maintenance of the telescopic cylinder based on the specific application requirements.

China factory USA Standard Telescopic Hydraulic Cylinders for Dump Truck   vacuum pump electricChina factory USA Standard Telescopic Hydraulic Cylinders for Dump Truck   vacuum pump electric
editor by Dream 2024-04-24

China Hot selling Tower Crane Telescopic Cage Hydraulic Cylinder for Crane vacuum pump booster

Product Description

Specifications:                         

Product Name HSG Series Hydraulic Cylinder
Work Press 7/14/16/21/31.5MPa     37.5/63MPa Can be Customized
Material Aluminum, Cast Iron,45mnb Steel, Stainless Steel
Bore Size 40mm–320mm, Customizable
Shaft Diameter 20mm–220mm, Customizable
Stroke Length 30mm–14100mm, Customizable
Rod Surface Hardness HRC48-54
Operating Temperature -40°C to +120 °C
Paint Color Black, Yellow, Blue, Brown, Customizable
Service OEM&ODM
Warranty 1 Year
MOQ 1 Piece
Delivery Time 7-15 Days, Also depending on specific demands
Certification ISO9001,CE
Capacity 50,000Pcs per year

Product Display:                     
Mounting:   
Working Flow: About Us   
Tongte designs and manufactures durable, heavy-duty hydraulic products and accessories and offers lifecycle services to them. We constantly develop our machine base and operations to meet customer-specific needs and remain leaders in the industry. Beyond all else, we want to be the trusted, groundbreaking partner our customers truly need.
In addition to the customized cylinders, CHINAMFG offers hydraulic power units, Electric-Hydraulic linear actuators, piston accumulators, system configurations, and versatile services such as repair and manufacturing services. The modern production facilities are located in HangZhou, ZheJiang (China) where production started in 2001. The core values of Tongke guiding its business strongly are commitment, sustainability, interaction, and customer-first.
We possess over 20 years of experience in the industry and extensive global market experience, our customers are located all over the world, and we truly commit to the customers’ needs – these are the success factors of our family-owned company. Our vision is to grow and expand the business further into global markets.
FAQ:                          
Q1: What does your company do?
A: we are a supplier of high-quality hydraulic products including Hydraulic Cylinders, Hydraulic Power packs, Hydraulic Linear, and other Hydraulic components.
Q2:Are you a manufacturer or trading company?
A: We are a manufacturer.
Q3:Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, and 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What is your warranty policy?
A: All our products are warranted for 1 full year from the date of delivery against defects in materials and workmanship. Each individual product will be strictly inspected on our factory QC Process
System before shipment. We also have a Customer Service team to respond to customers’ questions within 12 hours.  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Customization:
Available

|

telescopic cylinder

What advantages do telescopic cylinders offer in heavy equipment?

Telescopic cylinders offer several advantages in heavy equipment applications. Here’s a detailed explanation:

Compact design:

Telescopic cylinders have a compact design that allows for a relatively small retracted length compared to their extended length. This compactness is advantageous in heavy equipment where space is limited. The reduced length enables the equipment to have a smaller footprint, making it easier to maneuver in confined areas and transport on trailers or trucks.

Extended reach:

Telescopic cylinders provide extended reach capabilities, which is beneficial in heavy equipment operations. The nested design allows for multiple stages to extend, enabling the cylinder to reach greater distances. This extended reach is particularly useful in applications where the equipment needs to lift or push loads over obstacles, reach into deep pits, or access elevated areas.

High force output:

Telescopic cylinders are capable of generating high force output, making them suitable for heavy lifting and pushing tasks. The hydraulic system used in telescopic cylinders allows for amplification of force through the application of hydraulic pressure. This high force output is advantageous in heavy equipment applications that require lifting and moving heavy loads or exerting significant pushing or pulling forces.

Customizable load capacity:

Telescopic cylinders offer load capacity customization. The modular nature of telescopic cylinders allows for the addition or removal of stages, which directly affects the cylinder’s load capacity. By adjusting the number of stages, the cylinder’s load capacity can be tailored to the specific requirements of the heavy equipment, ensuring optimal performance and safety.

Smooth operation:

Telescopic cylinders provide smooth and controlled operation. The hydraulic control system allows for precise control of the cylinder’s extension and retraction, ensuring smooth and synchronized movement of multiple stages. This smooth operation is important in heavy equipment applications where precise positioning, lifting, or pushing is required to avoid damage to the equipment or the load.

Durability and reliability:

Telescopic cylinders are built to withstand heavy-duty usage in demanding environments. They are designed using robust materials and undergo rigorous testing to ensure durability and reliability. The cylinders can withstand high load capacities, harsh operating conditions, and repetitive cycles, making them well-suited for heavy equipment applications that involve continuous and demanding operations.

Overall, telescopic cylinders offer advantages such as compact design, extended reach, high force output, customizable load capacity, smooth operation, durability, and reliability. These advantages contribute to improved efficiency, productivity, and performance of heavy equipment in various industries.

It’s important to consult the manufacturer’s specifications and guidelines to ensure the appropriate selection and application of telescopic cylinders in heavy equipment.

telescopic cylinder

Can telescopic cylinders be used in manufacturing machinery for material processing?

Yes, telescopic cylinders are commonly used in manufacturing machinery for material processing tasks. Here’s a detailed explanation:

Material handling and manipulation:

Telescopic cylinders are utilized in manufacturing machinery to handle and manipulate materials during the processing stages. They enable lifting, lowering, pushing, or pulling of components, parts, or raw materials, facilitating various manufacturing operations such as cutting, bending, shaping, or assembly.

Positioning and alignment:

Telescopic cylinders contribute to precise positioning and alignment of materials in manufacturing machinery. The controlled extension and retraction of the cylinders allow operators to align workpieces accurately, ensuring consistent quality, dimensional accuracy, and proper fit during material processing.

Adjustable working height:

In manufacturing machinery, telescopic cylinders provide the advantage of adjustable working height. By extending or retracting the cylinders, the height of the work surface or processing area can be modified to accommodate different material sizes or operator preferences. This flexibility enhances ergonomics and facilitates efficient material processing.

Modular design for customization:

Telescopic cylinders feature a modular design that allows for customization according to specific manufacturing requirements. The number of stages or sections can be adjusted to achieve the desired extended length and capacity of the cylinder. This modularity enables telescopic cylinders to be tailored to the dimensions and processing needs of different manufacturing machinery.

Force generation and control:

Telescopic cylinders generate the necessary force to perform material processing tasks. The hydraulic control system regulates the extension and retraction of the cylinders, allowing operators to control the force applied during cutting, bending, or other processing operations. This force control ensures precise and consistent material processing while minimizing the risk of damage or deformation.

Space optimization:

Telescopic cylinders contribute to space optimization in manufacturing machinery. Their compact design allows for efficient utilization of available space, especially in equipment with limited footprint. The telescopic nature of the cylinders enables them to retract when not in use, minimizing the space occupied and allowing for better overall layout and arrangement of the machinery.

Advantages of telescopic cylinders in manufacturing machinery:

Telescopic cylinders offer several advantages in material processing applications within manufacturing machinery:

  • Material handling and manipulation capabilities
  • Precise positioning and alignment of materials
  • Adjustable working height for versatility
  • Modular design for customization
  • Force generation and control for consistent processing
  • Space optimization in compact machinery

Overall, telescopic cylinders are widely used in manufacturing machinery for material processing tasks, providing material handling, positioning, and force control capabilities. Their flexibility, modularity, and precise control contribute to efficient and accurate material processing operations in manufacturing.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in manufacturing machinery.

telescopic cylinder

What are the components and design features of a telescopic cylinder?

A telescopic cylinder consists of various components and incorporates specific design features to enable its functionality and performance. Here’s a detailed explanation:

Components of a telescopic cylinder:

  • Stages or Sleeves: A telescopic cylinder comprises multiple stages or sleeves that are nested inside one another. These stages are usually cylindrical in shape and are made of high-strength steel or aluminum alloy. The number of stages can vary depending on the specific design and application requirements.
  • Piston and Rod: Each stage of a telescopic cylinder has its own piston and rod assembly. The piston is located inside the stage and is connected to the rod, which extends through the center of the stage. The piston and rod assembly is responsible for generating the linear motion of each stage during extension and retraction.
  • Seals: Sealing elements, such as O-rings or lip seals, are used to ensure a hydraulic seal between the stages. These seals prevent leakage of hydraulic fluid and maintain pressure within each stage during operation. The seals also help to protect the internal components from contaminants.
  • Locking Mechanism: Telescopic cylinders often incorporate a locking mechanism to secure the extended stages in position. This mechanism ensures stability and prevents unintentional retraction of the cylinder under load. The locking mechanism can be mechanical, hydraulic, or a combination of both, depending on the design and application requirements.
  • Guides and Bearings: To maintain proper alignment and minimize friction between the stages, telescopic cylinders may include guides and bearings. These components facilitate smooth extension and retraction of the stages and provide structural support.
  • Hydraulic Connections: Telescopic cylinders have hydraulic connections to supply hydraulic fluid for extension and retraction. These connections typically include ports or fittings for the inlet and outlet of hydraulic fluid. Flexible hydraulic hoses or tubing are used to connect the cylinder to the hydraulic system of the equipment.

Design features of a telescopic cylinder:

  • Nested Structure: The nested structure is a fundamental design feature of a telescopic cylinder. It allows the stages to extend and retract within one another, enabling a longer stroke length while maintaining a compact retracted length.
  • Articulation Capability: Some telescopic cylinders incorporate articulation capability, which allows the cylinder to adjust its angle or position relative to the equipment. This feature enhances the versatility of the cylinder and enables it to adapt to different mounting orientations and working conditions.
  • Internal Flow Paths: The design of a telescopic cylinder includes internal flow paths that facilitate the controlled flow of hydraulic fluid between the stages during extension and retraction. These flow paths ensure synchronized movement of the stages and contribute to the overall performance and stability of the cylinder.
  • Surface Treatment: The external surfaces of telescopic cylinders are often treated or coated to provide protection against corrosion, wear, and environmental elements. Common surface treatments include painting, powder coating, or electroplating.

These components and design features work together to enable the functionality, reliability, and performance of a telescopic cylinder. It’s important to consult the manufacturer’s guidelines and specifications for proper installation, operation, and maintenance of the telescopic cylinder based on the specific application requirements.

China Hot selling Tower Crane Telescopic Cage Hydraulic Cylinder for Crane   vacuum pump booster	China Hot selling Tower Crane Telescopic Cage Hydraulic Cylinder for Crane   vacuum pump booster
editor by Dream 2024-04-24

China supplier Front Mounting Telescopic Dump Truck Hydraulic Hoist Cylinder for Tractor Trailer vacuum pump oil near me

Product Description

Single Acting Multi-stage Telescopic Hydraulic Cylinders For Trailer

 

Product Description

 

Eaton, parker, hercules, prince, cross type double acting hydraulic cylinder are used for Trailer, Agricultural Machinery, Garbage Truck, Landing Platform etc.

Tsingshi hydraulic Customers,  MAN, JAC, VOLVO, SHACMAN, DAF, JMC,  HUNO, CIMC, SINOTRUK, TATRA,BENS,XIHU (WEST LAKE) DIS.FENG,  FOTON,etc.
                  

NO ITEM single acting hydraulic cylinder DATA
1 Material Carbon Steel, Alloy Steel, 27SiMn,45#,20#,etc
2 Honed tube 40-300mm, Heat treatment, honing, rolling
3 Honed tube 30-280mm, plated nickel or hard Chrome or ceramic
4 Seal kit Parker, Merkel, Hallite, Kaden, etc
5 Coating Sandblasting, primer paint, middle paint, finish paint,
Color can paint according to customer demands.
6 Technology single acting hydraulic cylinder
7 Mounting type Pin-eye , flange, trunnion mount,ball mount, screw thread.
FC, FE, FEE, FSE,TPIN
8 Working medium Hydraulic Oil
9 Working pressure 16-20Mpa hydraulic lift cylinder
10 Temperature range -50°C to +100°C

Detailed Photos


 

Company Profile

Tsingshi hydraulic is a hydraulic telescopic cylinder for dump tipper truck company which takes up with hydraulic design, R&D, manufacturer, sell and service hydraulic products-small piston double acting hydraulic lift ram oil cylinder.

-double acting hydraulic cylinder Certification ISO9001 TS16949, etc;
-mini double acting hydraulic cylinder Export to North America, South America, Australia, South Korea, Southeast Asia, South Africa, Europe, Middle East, etc;
-ODM&OEM small double acting hydraulic cylinder according to client’s requirements;
-Professional manufacturer& supplier of Hydraulic Cylinders over 30 years;
-The micro double acting hydraulic cylinder can be used for Dump Truck, Tipper Truck, Trailer, Agricultural Machinery, Garbage Truck,Landing Platform etc; We can produce the follow brand hydraulic cylinder. HYVA, BINOTTO, EDBRO, PENTA, MAILHOT, CUSTOM HOIST, MUNCIE, METARIS, HYDRAULEX GLOBAL, HYCO, PARKER, COMMERCIAL HYDRAULICS, MEILLER. WTJX, XT, JX, HCIC, ZX, SZ, SJ.

 

 

QUALITY GUARANTEE

 

HIGH QUALITITY GUARANTEE-double acting hydraulic cylinder
-7*24 service.
-Competitive price.
-Professional technical team.
-Perfect after-sales service system.
-ODM&OEM Hydraulic Cylinder according to customer needs.
-Strong Hydraulic Cylinder production capacity to ensure fast delivery.
-Guarantee Quality. Every process must be inspected, all products need be tested before leaving the factory.

<hydraulic cylinder Leak Test

<piston hydraulic cylinder Buffer Test

<hydraulic lift cylinder Reliability Test

<hydraulic ram cylinder Full Stroke Test

<hydraulic cylinder double acting Operation Test

<micro double acting hydraulic cylinder Pressure Tight Test

<small double acting hydraulic cylinder Load Efficiency Test
<double action hydraulic cylinder Start-up Pressure Test
<double acting hydraulic cylinder Testing the Effect of Limit

SALES AND SERVICE

 



 

PRODUCTS SERIES

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO/Ts16949
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

telescopic cylinder

How do telescopic cylinders contribute to energy-efficient equipment operation?

Telescopic cylinders play a significant role in promoting energy-efficient equipment operation. Here’s a detailed explanation:

Reduced energy consumption:

Telescopic cylinders are designed to minimize energy consumption during equipment operation. The hydraulic system of telescopic cylinders allows for precise control over the extension and retraction of the cylinder stages. This control enables the equipment to use the minimum amount of hydraulic fluid and energy required to achieve the desired movement or position.

Efficient force transmission:

Telescopic cylinders are engineered to efficiently transmit forces from the hydraulic system to the desired application. The telescopic design allows for a direct and linear transfer of force, reducing energy losses that can occur in more complex mechanical systems. This efficient force transmission ensures that the energy supplied to the telescopic cylinder is effectively utilized to perform the desired work.

Compactness and weight reduction:

Telescopic cylinders offer compactness in equipment design, which contributes to energy efficiency. By retracting the cylinder stages, the overall length of the equipment can be minimized, reducing weight and inertia. This reduction in weight and inertia requires less energy to start and stop the movement of the equipment, resulting in energy savings during operation.

Optimized design:

Telescopic cylinders are designed with efficiency in mind. Manufacturers consider factors such as the cylinder’s bore size, rod diameter, and overall construction to ensure optimal performance while minimizing energy requirements. By using lightweight and high-strength materials, optimizing the cylinder’s dimensions, and reducing internal friction, telescopic cylinders can operate efficiently and contribute to energy savings.

Controlled motion:

Telescopic cylinders provide precise and controlled motion, allowing equipment operators to perform tasks with accuracy and efficiency. The hydraulic control system in telescopic cylinders enables smooth and proportional extension and retraction, reducing the need for excessive force or multiple adjustments. This controlled motion prevents energy waste and ensures that the equipment operates efficiently.

Applications in energy-efficient equipment:

Telescopic cylinders are utilized in various energy-efficient equipment, such as hybrid or electric-powered machinery. These equipment types rely on the optimization of energy usage to minimize environmental impact and reduce operating costs. Telescopic cylinders contribute to these objectives by providing efficient force transmission, controlled motion, and compact design.

Furthermore, the integration of advanced technologies, such as electronic control systems, sensors, and feedback mechanisms, can enhance the energy efficiency of equipment that incorporates telescopic cylinders. These technologies allow for further optimization of hydraulic system performance, energy recovery, and intelligent control of equipment operations.

Overall, telescopic cylinders contribute to energy-efficient equipment operation through reduced energy consumption, efficient force transmission, compactness and weight reduction, optimized design, and controlled motion. By utilizing telescopic cylinders in equipment design and considering energy-efficient practices, industries can achieve more sustainable and economical operation.

Consulting with equipment manufacturers or industry experts can provide further insights into the energy-saving benefits and applications of telescopic cylinders in specific equipment types.

telescopic cylinder

Can telescopic cylinders be used in forestry equipment for tree handling?

Yes, telescopic cylinders are commonly used in forestry equipment for tree handling tasks. Here’s a detailed explanation:

Tree felling and extraction:

Telescopic cylinders play a vital role in tree felling and extraction operations. They are utilized in equipment such as feller bunchers, harvesters, and forwarders. Telescopic cylinders provide the necessary force to cut down trees and extract them from the forest. The cylinders are used in combination with cutting heads, grapples, or clamps to grip, hold, and manipulate trees during the felling and extraction processes.

Boom and arm extension:

In forestry equipment, telescopic cylinders are employed to extend the booms and arms of machinery. This extension capability allows operators to reach trees located at various distances and heights, facilitating efficient tree handling. Telescopic cylinders enable the equipment to adapt to different tree sizes and positions, enhancing productivity and reducing manual labor.

Precise control:

Telescopic cylinders provide precise control over tree handling movements. The hydraulic control system allows operators to extend and retract the cylinders with accuracy, enabling controlled positioning of trees during felling, extraction, or stacking. This precise control is crucial for ensuring operator safety, preventing damage to the equipment or surrounding environment, and optimizing operational efficiency.

Load handling and stacking:

Telescopic cylinders support load handling and stacking operations in forestry equipment. They provide the necessary lifting force to handle tree logs and facilitate stacking for transportation or processing. The cylinders work in conjunction with grapples, forks, or other attachments to securely grip and manipulate tree logs during loading, unloading, or stacking activities.

Stability and balance:

Telescopic cylinders contribute to the stability and balance of forestry equipment during tree handling tasks. The controlled extension and retraction of the cylinders help maintain the proper weight distribution and prevent tipping or imbalance when handling heavy tree logs. This ensures the safety of operators and equipment in challenging forestry environments.

Advantages of telescopic cylinders in forestry equipment:

Telescopic cylinders offer several advantages in tree handling applications:

  • Enhanced reach: Telescopic cylinders enable extended reach, allowing operators to access trees at various distances and heights.
  • Precise control: The hydraulic control system provides precise control over tree handling movements, ensuring accurate positioning and manipulation.
  • Efficient load handling: Telescopic cylinders provide the necessary force for lifting, holding, and stacking tree logs, improving efficiency in forestry operations.
  • Adaptability: The extension capability of telescopic cylinders allows for adaptation to different tree sizes and positions, enhancing versatility in tree handling tasks.
  • Stability and safety: Telescopic cylinders contribute to equipment stability and operator safety by maintaining proper weight distribution during tree handling activities.

Overall, telescopic cylinders are widely used in forestry equipment for tree handling tasks, offering extended reach, precise control, efficient load handling, adaptability, and stability. They enhance the productivity, safety, and efficiency of forestry operations.

It’s important to consult the equipment manufacturer’s documentation and guidelines for specific information on the integration, operation, and maintenance of telescopic cylinders in forestry equipment.

telescopic cylinder

Can telescopic cylinders be customized for specific machinery and equipment?

Yes, telescopic cylinders can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation:

Customizable stroke length:

Telescopic cylinders can be designed and manufactured with customized stroke lengths to suit the specific needs of machinery and equipment. The stroke length determines the maximum extension or retraction distance of the cylinder and can be tailored to match the required range of motion for a particular application.

Adjustable force and speed:

The hydraulic control system of telescopic cylinders allows for adjustability in terms of force and speed. The system can be configured to provide the necessary force output for the machinery or equipment, ensuring optimal performance. Additionally, the speed of extension and retraction can be adjusted to match the operational requirements, enabling precise and efficient operation.

Mounting options:

Telescopic cylinders can be customized with different mounting options to facilitate easy integration with specific machinery and equipment. Mounting configurations can vary depending on factors such as available space, mounting orientation, and compatibility with existing systems. Manufacturers can provide various mounting solutions to ensure seamless installation.

Sealing and protection:

In certain applications, telescopic cylinders may require specialized sealing and protection features. Manufacturers can customize the cylinder design to incorporate seals and protective coatings that are suitable for the working environment. This customization helps enhance the longevity and reliability of the cylinder, especially in harsh operating conditions.

Material selection:

Telescopic cylinders can be manufactured using different materials to meet specific machinery and equipment requirements. Material selection depends on factors such as load capacity, operating temperature, corrosion resistance, and weight considerations. Manufacturers can offer material options to ensure the cylinder’s compatibility and performance in the intended application.

Integration with control systems:

Telescopic cylinders can be integrated with control systems and sensors to enable advanced functionality and automation. Customization may involve incorporating position sensors, pressure sensors, or other feedback devices to provide real-time data and enhance the overall performance and safety of the machinery or equipment.

Overall, telescopic cylinders can be customized in terms of stroke length, force and speed adjustability, mounting options, sealing and protection features, material selection, and integration with control systems. This customization allows telescopic cylinders to be tailored to the specific requirements of machinery and equipment, ensuring optimal performance and functionality.

It’s important to collaborate with the manufacturer or a qualified expert to determine the appropriate customization options and ensure compliance with relevant industry standards and regulations.

China supplier Front Mounting Telescopic Dump Truck Hydraulic Hoist Cylinder for Tractor Trailer   vacuum pump oil near me		China supplier Front Mounting Telescopic Dump Truck Hydraulic Hoist Cylinder for Tractor Trailer   vacuum pump oil near me
editor by Dream 2024-04-24

China Standard Ashun Oil Shun Cylinder Rod Hydraulic Cylinder Ho-B-N-080-a-040-N-0200-N-N-Astoo vacuum pump brakes

Product Description

Q1: How can contact sales?
A1: Contact with us in TraderManager, or send email to us.      

Q2: How to make payment? 
A2: Paypal, Western Union, Money Gram or T/T transfer 

Q3: How long does it take to process orders?
A3:It usually takes 10-14 business days to process most orders for no stock, if stock available, only take 2- 3 business days.

Q4: What is the packing method? 
A4: For small piece, we use carton box; for big piece, we use exporting grade plywood case.

Q5: How to ship?
A5: Sea freight, Air freight or International express(DHL, FEDEX,UPS…) all are available.

Q6: What is the warranty
A6: 12 months against B/L date

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders enhance the performance of construction and mining equipment?

Hydraulic cylinders play a vital role in enhancing the performance of construction and mining equipment by providing powerful and precise linear motion. These industries require heavy-duty machinery that can withstand demanding conditions and efficiently perform tasks such as lifting, pushing, and digging. Here’s a detailed explanation of how hydraulic cylinders enhance the performance of construction and mining equipment:

1. Power and Force:

– Hydraulic cylinders are capable of generating substantial force, allowing construction and mining equipment to handle heavy loads and perform challenging tasks. The hydraulic system applies pressure to the fluid, which is transmitted to the hydraulic cylinder, resulting in the movement of the piston rod. The larger the diameter of the cylinder, the greater the force that can be generated. Hydraulic cylinders enable the equipment to exert significant force, making it possible to lift and move heavy materials, excavate soil and rock, and perform other demanding operations.

2. Precise Control:

– Hydraulic cylinders offer precise control over the movement of construction and mining equipment. By regulating the flow of hydraulic fluid into and out of the cylinder through control valves, operators can precisely control the speed, position, and force exerted by the hydraulic cylinder. This level of control allows for accurate and controlled movements, enabling operators to perform tasks with precision and efficiency. Whether it’s lifting a specific load, positioning an attachment, or maneuvering in tight spaces, hydraulic cylinders provide the necessary control for optimal equipment performance.

3. Adaptability:

– Hydraulic cylinders are highly adaptable to various construction and mining equipment. They can be designed and manufactured in different sizes, stroke lengths, and configurations to suit specific requirements. Hydraulic cylinders can be integrated into different types of equipment, such as excavators, loaders, bulldozers, and drilling rigs. Their adaptability allows for the customization of equipment to meet the needs of different applications and operating conditions, enhancing overall performance.

4. Durability and Reliability:

– Construction and mining environments are known for their harsh conditions, including extreme temperatures, vibrations, and exposure to dust, dirt, and debris. Hydraulic cylinders are designed to withstand these challenging conditions and provide long-lasting performance. They are constructed using robust materials, such as high-strength steel, and equipped with seals and components that can endure heavy loads, impacts, and contaminants. The durability and reliability of hydraulic cylinders ensure that construction and mining equipment can operate continuously and withstand the demanding nature of these industries.

5. Safety:

– Hydraulic cylinders contribute to the safety of construction and mining equipment operations. Their precise control allows operators to perform tasks with accuracy, minimizing the risk of accidents and damage to the equipment or surrounding structures. Hydraulic cylinders also enable the implementation of safety features, such as overload protection systems and emergency stop mechanisms, ensuring the safe operation of the equipment. The reliable and controlled movements provided by hydraulic cylinders enhance overall safety in construction and mining operations.

6. Increased Productivity:

– By providing the necessary power, precise control, and adaptability, hydraulic cylinders contribute to increased productivity in construction and mining applications. Construction and mining equipment equipped with hydraulic cylinders can perform tasks more efficiently and effectively, reducing the time and effort required to complete projects. The ability to handle heavy loads, control movements precisely, and adapt to various tasks improves the overall productivity of the equipment, leading to cost savings and improved project timelines.

In summary, hydraulic cylinders enhance the performance of construction and mining equipment by providing power, precise control, adaptability, durability, and safety. They enable these machines to handle heavy loads, perform tasks with accuracy, withstand harsh conditions, and increase productivity. Hydraulic cylinders are integral components that contribute to the efficiency and effectiveness of construction and mining operations.

hydraulic cylinder

Contribution of Hydraulic Cylinders to the Precision of Robotic and Automation Systems

Hydraulic cylinders play a significant role in enhancing the precision of robotic and automation systems. These systems rely on precise and controlled movements to perform various tasks with accuracy and repeatability. Let’s explore how hydraulic cylinders contribute to the precision of robotic and automation systems:

  1. Precise Positioning: Hydraulic cylinders enable precise positioning of robotic arms or automation components. They provide accurate control over the linear motion required for tasks such as picking, placing, and assembly. By precisely controlling the extension and retraction of the hydraulic cylinder, the system can achieve the desired position with high accuracy, ensuring precise alignment and consistent results.
  2. Controlled Motion: Hydraulic cylinders offer controlled and smooth motion, which is crucial for precise operation in robotic and automation systems. The flow of hydraulic fluid can be precisely regulated to control the speed and acceleration of the cylinder’s movement. This precise control allows for gentle and controlled movements, minimizing vibrations, overshooting, or jerky motions that could affect the accuracy of the system.
  3. Force Control: Hydraulic cylinders provide force control capabilities that contribute to precision in robotic and automation systems. By adjusting the hydraulic pressure, the force exerted by the cylinder can be precisely controlled. This is particularly valuable in applications that require delicate force-sensitive tasks, such as gripping fragile objects or performing precise force feedback during assembly or testing processes.
  4. Load Handling: Hydraulic cylinders are capable of handling heavy loads, allowing robotic and automation systems to manipulate and transport objects with precision. The high force capabilities of hydraulic cylinders ensure secure and stable handling of loads, minimizing the risk of slippage or imprecise positioning. This is crucial in applications where precise control over heavy objects is required, such as material handling or industrial assembly processes.
  5. Durability and Reliability: Hydraulic cylinders are known for their durability and reliability in demanding industrial environments. The ability to withstand repeated use, high loads, and harsh conditions ensures consistent performance over time. This reliability contributes to the precision of robotic and automation systems, as any deviation or failure in the cylinder’s movement could lead to inaccuracies or disruptions in the system’s operation.

In summary, hydraulic cylinders make significant contributions to the precision of robotic and automation systems by enabling precise positioning, controlled motion, force control, load handling, and offering durability and reliability. These capabilities ensure accurate and repeatable movements, minimize errors, and enhance the overall precision of the system. By incorporating hydraulic cylinders into robotic and automation systems, manufacturers can achieve higher levels of precision, efficiency, and productivity in various industrial applications.

hydraulic cylinder

Can hydraulic cylinders be adapted for use in both industrial and mobile equipment?

Yes, hydraulic cylinders can be adapted for use in both industrial and mobile equipment. The versatility and adaptability of hydraulic systems make them suitable for a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Equipment:

– Hydraulic cylinders are extensively used in industrial equipment such as manufacturing machinery, construction equipment, material handling systems, and heavy-duty machinery. They provide the necessary force and controlled movement for tasks such as lifting, pushing, pulling, and positioning heavy loads. Industrial hydraulic cylinders are typically designed for robustness, durability, and high load-bearing capacities to withstand the demanding environments and heavy-duty applications encountered in industries.

2. Mobile Equipment:

– Hydraulic cylinders are also widely adopted in mobile equipment, including agricultural machinery, mining equipment, forestry machinery, and transportation vehicles. These cylinders enable various functions such as tilting, lifting, steering, and stabilizing. Mobile hydraulic cylinders are designed to be compact, lightweight, and efficient to meet the specific requirements of mobile applications. They are often integrated into hydraulic systems that power multiple functions in a single machine.

3. Adaptability:

– One of the key advantages of hydraulic cylinders is their adaptability. They can be customized and configured to suit different operating conditions, equipment sizes, load capacities, and speed requirements. Hydraulic cylinder manufacturers offer a wide range of sizes, stroke lengths, mounting options, and rod configurations to accommodate diverse applications. This adaptability allows hydraulic cylinders to be utilized in both industrial and mobile equipment, serving various purposes across different sectors.

4. Mounting Options:

– Hydraulic cylinders can be adapted to different mounting arrangements to suit the specific requirements of industrial and mobile equipment. They can be mounted in various orientations, including vertical, horizontal, or at an angle. Different mounting options, such as flange mounts, trunnion mounts, and clevis mounts, provide flexibility in integrating hydraulic cylinders into different equipment designs.

5. Integration with Hydraulic Systems:

– Hydraulic cylinders are often part of a larger hydraulic system that includes components such as pumps, valves, hoses, and reservoirs. These systems can be tailored to meet the specific needs of both industrial and mobile equipment. The hydraulic system’s design and configuration can be adapted to provide the necessary flow rates, pressures, and control mechanisms required for optimal performance in the intended application.

6. Control and Automation:

– Hydraulic cylinders in both industrial and mobile equipment can be integrated with control systems and automation technologies. This allows for precise and automated control of the cylinder’s movement and function. Proportional control valves, sensors, and electronic controls can be incorporated to achieve accurate positioning, speed control, and synchronization of multiple hydraulic cylinders, enhancing overall equipment performance and productivity.

7. Safety Considerations:

– Hydraulic cylinders for both industrial and mobile equipment are designed with safety in mind. They often feature built-in safety mechanisms such as overload protection, pressure relief valves, and emergency stop systems to prevent accidents and equipment damage. Safety standards and regulations specific to each industry are taken into account during the design and adaptation of hydraulic cylinders for different applications.

Overall, hydraulic cylinders offer the adaptability and performance required for use in both industrial and mobile equipment. Their versatility, customizable features, mounting options, integration capabilities, and safety considerations make them suitable for a wide range of applications across diverse industries. Whether it’s heavy-duty industrial machinery or mobile equipment operating in challenging environments, hydraulic cylinders can be adapted to meet the specific needs and requirements of various equipment types.

China Standard Ashun Oil Shun Cylinder Rod Hydraulic Cylinder Ho-B-N-080-a-040-N-0200-N-N-Astoo   vacuum pump brakesChina Standard Ashun Oil Shun Cylinder Rod Hydraulic Cylinder Ho-B-N-080-a-040-N-0200-N-N-Astoo   vacuum pump brakes
editor by Dream 2024-04-23